Further Comparisons of the Random Coefficients Model with Repeated Measures ANOVA in Longitudinal Group-Randomized Trials

August 9, 2021 Joint Statistical Meetings

Jonathan Moyer and David M. Murray Office of Disease Prevention Division of Program Coordination, Planning and Strategic Initiatives National Institutes of Health



## Introduction

- Group- or cluster-randomized trials (GRTs) randomly assign groups to treatment conditions.
  - Group-level interventions, manipulation of physical or social environment, or cannot be delivered to individuals.
  - Intracluster correlation (ICC) between observations can inflate Type I error rates if not accounted for.
- Multiple-period GRTs further complicate correlational structure by the nature of repeat observations.
  - Cohort: the same individuals measured at each time period.
  - Cross-sectional: individuals measured only once.
- Key analysis decision: time as categorical or continuous?
  - Repeated Measures ANOVA (RM-ANOVA): time is categorical.
  - Random Coefficients (RC): time is continuous.

## Updates to guidance for analysis models

- Longstanding guidance recommends the use of RC over RM-ANOVA when analyzing multiple-period GRTs (Murray, et al., 1998).
  - RC maintained nominal Type I error rate with data generated assuming both approaches.
  - RM-ANOVA exhibited inflated Type I error rate with data generated assuming RC.
- Guidance assumed cross-sectional data, variance components covariance structure, and time x group random effects.
- Questions:
  - Would better performance with RM-ANOVA analysis models be achieved with unstructured covariance structure?
  - Would similar patterns have been seen in cohort data?
  - How important is the time x group term in the analytic model if the data generation model includes variability at that level?

Murray DM, et al. Analysis of data from group-randomized trials with repeat observations on the same groups. Stat Med. 1998;17(14):1581-600. PMID: 9699231



## **Overview and Conclusions**

- We present results of a simulation study assessing the Type I error rate for RM-ANOVA and RC analysis models under the null hypothesis of no fixed effects.
  - Cross-sectional and cohort data sets generated under RM-ANOVA and RC models were generated.
  - All simulated data sets contained time x group variation.
  - RM-ANOVA analysis models were applied using both variance components and unstructured covariance.
- Key conclusions:
  - RC analysis models with time x group random effects performed well on all data sets.
  - RM-ANOVA with unstructured covariance does not avoid inflated Type I error when applied to data generated according to RC.
  - Analysis models specifying only group-level intercepts performed poorly unless the ICC was very low.

