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What is Meta-Analysis?

* Meta-analysis refers to the statistical
synthesis of quantitative findings from
two or more empirical research studies

* The research studies included in a
meta-analysis are often identified as
part of a systematic review

* The outcomes/findings from research
studies are encoded as effect sizes
(e.g., mean difference, standardized
mean difference, risk ratio, hazard ratio,
proportion, correlation coefficient)
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The Value of Meta-Analysis

* Results can provide cumulative summaries of the
current, best available research evidence relevant to a
specific question

* Permits examination of research questions that may be

— difficult to address in an individual primary study

* Replicability of empirical findings

» Variation in effects across populations, settings,
methods, study design features




Univariate Meta-Regression Approach
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Dependent Effect Sizes in Meta-Analysis

* Traditional univariate meta-regression assumes the effect sizes included in the
model are statistically independent

 But dependent effect sizes (multivariate and/or nested effects) are common
due to, e.g.:
 Multiple measures of outcomes within studies
 Multiple comparison conditions within studies
 Multiple time points within studies
* Multiple participant subgroups within studies
* Multiple studies nested within larger contexts/settings
 Multiple independent samples nested within studies



Handling Dependent Effect Sizes

Numerous approaches for addressing dependent effect sizes (Lopez-Lopez et al., 2018)

Naive Reductionist Integrative
* Ignore %endencies * Separate meta-analyses * Multivariate meta-analysis
 Select one independent  Multi-level meta-analysis

effect size per study per
analysis (randomly, or using
decision rules)

e Robust variance estimation

* Create a single average
(synthetic) effect size per
study per analysis

10



Robust Variance Estimation (RVE)

* One of the most flexible methods for synthesizing dependent effect sizes
(Hedges et al., 2010; Pustejovsky & Tipton, 2022; Tipton, 2015)

* Does not require knowledge of the covariance structure between the dependent
effects

e Can be used to handle any/multiple types of dependency

Extends the WLS estimation approach for meta-regression to include robust
standard errors that account for clustered dependence structure

* The variance-covariance matrix £ (with unknown off-diagonal elements) is
substituted with a matrix of cross-products of within-study residuals derived
empirically under a working model of the covariance structure

* Also adds a set of small sample adjustment matrices

11



RVE Working Models

* Analyst must choose a working model of the
dependence structure to identify the weights
that are expected to be approximately inverse
variance (Pustejovsky & Tipton, 2022)

* |f working model is correctly specified, resulting
weights are exactly inverse variance and the RVE
estimator is fully efficient

* Even if working model is misspecified, RVE
estimator yields unbiased coefficient estimates
and valid standard errors

e Software packages/macros available in R
(metafor, clubSandwich, robumeta),
SAS (mvmeta), Stata (robumeta)

Common working models

Correlated effects

Hierarchical effects

Correlated & hierarchical effects
Subgroup correlated effects

12



Cyberbullying
Intervention Review
(Polanin et al., 2022)

Table 2 Overall meta-analysis results

Outcome domain Number Number of Average effect size (SE) 95% CI Tau- I-squared 95% PI PPI1
of stud-  effect sizes squared (between,
ies (between)  within)
Cyberbullying perpetration 44 96 —0.18 (.05) —0.28,-0.09 0.06 79.71,9.78 —0.67,0.30 76.08
Cyberbullying victimization 39 75 —0.13 (.04) —0.21,-0.05 0.02 34.90,53.77 —-040,0.14 72.61
Bullying perpetration 22 67 —0.18 (.03) —0.28,-0.08 0.03 55.20,37.44 —0.54,0.17 77.94
Bullying victimization 24 82 —0.16 (.03) —0.27,-0.05 0.05 63.21,28.97 -0.59,0.26 73.19
SE standard error, CI confidence interval, PI prediction interval, PPI probability of positive impact
Table 3 Confirmatory moderator analyses for cyberbullying perpetration
Variable Number Number Coef. or mean Standard error 95% Cl—Lower 95% Cl—Upper T-statistic df p-value
of stud-  ofeffects
ies
Country of origin 0.87 23.28 0.39
Non-USA 30 66 —-0.22 0.04 —0.31 -0.13
USA 14 30 —0.11 0.11 —0.33 0.10
Focus of program —0.53 12.57 0.61
No cyber target 9 26 —0.15 0.08 —0.30 0.01
Cyberbullying targeted 35 70 —0.20 0.06 —0.30 -0.09
Timepoint 0.10 305 092
Posttest 42 79 —0.18 0.05 —0.28 —0.09
Follow-up 8 17 —0.18 0.06 —0.29 -0.07
Effect size type 2.21 2.94 0.12
Continuous 36 80 —0.20 0.05 —0.29 -0.11
Dichotomous 9 16 —0.05 0.08 —0.20 0.11
Percent males 44 96 0.03 0.03 —0.03 0.10 0.96 1.20 0.49
Percent nonwhite 44 96 —0.11 0.12 —0.34 0.12 —0.94 19.66 0.36

df degrees of freedom

Source: “A Systematic Review and Meta-Analysis of Interventions to Decrease Cyberbullying Perpetration and Victimization,” by J. R. Polanin et al., 2022,
Prevention Science, 23, p. 439-454 (https://doi.org/10.1007/s11121-021-01259-y).
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Limitations of RVE

e Poor performance with small samples or with
moderators with unbalanced distributions

* Imprecise estimation of heterogeneity parameters if
working model is misspecified

e Just because the model can handle dependent effects
does not mean it is appropriate to include them all in
the same model

14
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Network Meta-Analysis (NMA)

Placebo pill

* Traditional meta-analysis approaches are
useful for examining pairwise contrasts a5t @ TR N  rocii
(e.g., Program vs. Control; Program A vs. B)

Promotion of

* But often interested in the comparative /
effectiveness of multiple programs rocdetoll
(e.g., Programs A vs. B vs. C vs. D)

Other psychological Self-help with

 NMA simultaneously compares 3+
interventions in a single analysis; useful for
assessing comparative effects and senzodicepines
rankings of programs (Caldwell et al., 2005;
Dias et al., 2013) vt e eprsets e nomber of i i exch ieck aonpestions e The szeof exch cice

represents the number of people who received each treatment. CBT=cognitive-behavioural therapy. SNRI=serotonin-
norepinephrine reuptake inhibitor. SSRI=selective serotonin-reuptake inhibitor.

Source: “Psychological and Pharmacological Interventions for Social Anxiety Disorder in Adults: A Systematic Review and Network Meta-Analysis,” by E. Mayo-
Wilson et al., 2014, The Lancet, 1(5), p. 368-376 (https://doi.org/10.1016/S2215-0366(14)70329-3). 16
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Direct, Indirect, and Combined Evidence

* NMA can be used to combine direct (observed) and indirect (unobserved)
evidence to estimate mixed/combined (direct + indirect) evidence

 Validity of NMA requires transitivity for every indirect comparison, and
coherence for every loop of evidence within the network

gmdlrect 9 Adirect gdlrect

B
Cognitive
Aindirect _ . Adirect
9 | behavioral QBC
therapy
lerect gmdlrect
A C lexed Var(@ dlrect) Var(@lndlreCt)
Motivational Psycho- 1 1
enhancement Adirect education ~d d
therapy QAC Var(g 1rect) Var(g in II‘ECt)
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NMA Model Estimation

* Straightforward estimation if all included studies are 2-arm trials, but calculating
indirect estimates becomes more complex when synthesizing evidence from multi-
arm trials

« Several models have been proposed to conduct Bayesian or frequentist NMA
(Efthimiou et al., 2016)
* Bayesian hierarchical model
* Multivariate meta-analysis model
* Frequentist graph theoretical model

e Software packages/macros available in R (BUGSnet, gemtc, pcnetmeta,

netmeta, viscomp), SAS (BGLIMM, PROC GLIMMIX), Stata (mvmeta, network,
network graphs).

e See https://methods.cochrane.org/cmi/network-meta-analysis-toolkit for additional
software and materials

* See https://crsu.shinyapps.io/Metalnsight/ for a Shiny app for visualizations

18


https://methods.cochrane.org/cmi/network-meta-analysis-toolkit
https://crsu.shinyapps.io/MetaInsight/

Brief Alcohol
Intervention Example
(Seitidis et al., 2022)

Fig.1 Network plot showing

the network’s geometry. The

plot has been constructed via

CINeMA web application. The

node sizes indicate the numbers

of participants randomized to

each intervention while the

thickness of the edges indicates

the number of studies compar-

ing the different intervention/

comparator groups. The edge

color indicates the majority of

studies’ risk of bias determi-

nation in the corresponding THRIVE
treatment comparison. Green, .
yellow, and red indicate low,

unclear, and high risk of bias,

respectively
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CYD

Alc101 cDCuU

Source: “Network Meta-Analysis Techniques for Synthesizing Prevention Science Evidence,” by G. Seitidis et al., 2022, Prevention Science, 23, p. 415-424 19

(https://doi.org/10.1007/s11121-021-01289-6).
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Brief Alcohol Intervention Example
(Seltidis et al., 2022)
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Component Network Meta-Analysis (CNMA)

* Extends standard NMA models to A+B+E R0
address questions about the
comparative effects of different
program components/elements
(Rucker et al., 2020; Welton et al.,
2009)

« Additive main effects: assumes the
effect of a multi-component
intervention is the sum of the effects
of its components

A+B+D

C+E

B+ B+D

Figure1 Network plot of multicomponent interventions comprising

* Two-way interaction: allows five components (A, B, C, D, E) and UC. The size of the nodes and
inte raCtionS between com ponents the thickness of the edges are proportional to the number of studies
.y . included and the number of participants randomised to an intervention,
(synergistic or antagonistic) respectively. UC, usual care.

Source: “Component network meta-analysis in a nutshell,” by S. Tsokani et al., 2022, BMJ Evidence-Based Medicine, Online First 27 July 2022

21
(http://dx.doi.org/10.1136/bmjebm-2021-111906).
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Limitations of (C)NMA

 Combining direct & indirect evidence can yield increased
precision, but requires strong assumptions about
transitivity (exchangeability) and coherence (consistency)

e Sparse networks may yield imprecise estimates of relative
intervention effects

* |ndirect evidence is observational

* Heterogeneity within the comparisons in the network can
yield substantively meaningless summary effects

22



Meta-Analytic Structural
Equation Modeling




Testing Hypothesized Multivariate Models

* Traditional univariate meta-analysis approaches
can be used to synthesize correlation coefficients
between pairs of variables (e.£., "y1x2) "x1x3» Tx2x3)

rx X
* But meta-analyzing these effects (coefficients) X, - X,
one at a time is limited (Cheung & Hong, 2017)
and does not ’”xlxx /:c2x3
* Permit testing a hypothetical model %o

» Allow for specification of models with latent
variables

* Account for the presence of other (potentially
correlated) variables

* Allow estimation of indirect effects

24



Meta-Analytic Structural Equation
Modeling (MASEM)

 Combines meta-analysis and SEM approaches to fit and

X1

test hypothesized multivariate models using effect size data N
. . . X3 . x4
obtained from multiple research studies (Cheung, 2015) L@b/' o,
* Allows evaluation of the unique effects of multiple .

simultaneous predictors

* Permits testing new theories or pathways that may not have
been tested directly in any primary studies

« Commonly used to evaluate path models, but can also be O @
used for models with latent variables

 Software packages/macros available in R (metaSEM) S | I
* See also https://sjak.shinyapps.io/webMASEM/ for a Shiny app Gb @ @ é

25
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Two-Stage Structural Equation
Modeling (TSSEM)

Method involves two stages of estimation (Cheung & Chan, 2005)

1. Estimate pooled (meta-analytic) correlation matrix that combines the
correlation matrices from multiple research studies

* |nverse-variance weighted multivariate meta-analysis using ML estimation

2. Fit a structural equation model (e.g., path model, factor analytic model) to
the pooled correlation matrix and its asymptotic sampling covariance
matrix
 WLS estimation to fit structural equation models

 Produces likelihood ratio statistics and goodness-of-fit statistics to evaluate
model fit

 Permits testing of equality constraints, indirect effects
* Only allows examination of one categorical moderator at a time

26



One-Stage Meta-Analytic Structural
Equation Modeling (OSMASEM)

* Fits the structural equation model directly on the data from primary studies,
treating studies as ‘participants’ (Jak & Cheung, 2020)
* |nverse-variance weighted multivariate meta-analysis using ML estimation + SEM

* Correlations and heterogeneity modelled as the mean and covariance structures in
SEM

* Imposes a model implied correlation structure on the average correlation matrix
across studies

* Allows all parameters in the SEM to be modeled by multiple moderators at any
level of measurement

27



Dysfunctional Attitudes
and Depression Review
(Valentine et al., 2022)

‘ Dep = b ‘ Aut
P ’

1Y

Fig1 Proposed mediation model. Dys, dysfunctional attitudes; Aut,
automatic thoughts; Dep, depression. Path ¢ represents the hypoth-
esized direct effect of dysfunctional attitudes on depression. The
indirect effect of dysfunctional attitudes on depression via automatic
thoughts is represented by the axb

Source: “A Primer on Meta-Analytic Structural Equation Modeling: The Case of Depression,” by J.C. Valentine et al., 2022, Prevention Science, 23, p. 346-365

(https://doi.org/10.1007/s11121-021-01298-5).

Table 3 Weighted descriptive Construct pair
statistics for the correlations of

Mean correlation SE

I k n

interest Dysfunctional attitudes — automatic thoughts 0.4701 .0269
Depression — dysfunctional attitudes 0.4026 .0135
Depression — automatic thoughts 0.6719 .0240

0721  53% 19 3,718
0978 71% 90 18,550
0605  49% 52 11,980

SE standard error, T estimated standard deviation of the true effect sizes, P proportion of variability in
true effect size that appears to be attributable to between-study differences, £ number of correlations in the
meta-analytic database, # total number of participants represented in the meta-analysis

Path b (automatic
thoughts — depression)

Path ¢ (dysfunctional
attitudes — depression)

Table 4 Moderating effects on Path a (dysfunctional attitudes
the path coefficients and their — automatic thoughts)
standard errors General samples 0.4831 (0.0166)

Clinical samples 0.2847 (0.0257)

Mixed samples 0.5163 (0.0328)

0.5911 (0.0428)
0.5604 (0.0640)
0.6805 (0.0627)

0.1312 (0.0303)
0.1513 (0.0391)
0.0923 (0.0572)

Values in parentheses are standard errors

28
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Theory of Planned
Behavior Review
(Hagger et al., 2022)

Figure 1

Diagrammatic Representation of the Theory of Planned Behavior With Interaction Effecis

Attitude

Perceived
Behavioral
Control

Intention

Note. Coetficients are standardized parameter estimates.

*p< 05 *p<0l. =*p< 00l

Source: “Perceived Behavioral Control Moderating Effects in the Theory of Planned Behavior: A Meta-Analysis,” by M. S. Hagger et al., 2022, Health
Psychology, 41, p. 346-365 (https://doi.org/10.1037/hea0001153).

Behavior

Table 2

Standardized Path Coefficients for Direct and Indirect Effects and Correlations for the Meta-
Analytic Structural Equation Models of the Theory of Planned Behavior With Interaction Effects

Wald C]gs
Eftect B LL UL
Direct etfects
Intention—Behavior (.4 8G*** (0.384 (0.594
Attitude— Intention 0.380%** 0.319 0.452
Subjective Norm—Intention (. 162%** 0.100 0.225
PBC—Intention 0.3 14%%= 0.240 0.388
PBC—Behavior 0.065 —0.054 0.184
Interaction effects
Attitude X PBC—Intention ~0.050 —0.148 0.047
Subjective Norm X PBC—Intention 0.075 —0.015 0.164
Intention * PBC—Behavior 0.066%* 0.025 0.107
Indirect effects
Attitude— Intention—Behavior 0. 189%#= 0.141 0.237
Subjective Norm—Intention— Behavior (.07g % 0.045 (.113
PBC—Intention—Behavior 0. 154%%= 0.099 0.209
Correlations
Attitude« Subjective norm 0.346% %= 0.302 0.391
Attitude«+PBC (0. 401 *** 0.359 0.444
Attitude« Attitude X PBC —(.274% %% —(.345 ~0.204
Attitude« Subjective norm X PBC —0.075% % =0.115 ~0.036
Attitude« Intention X PBC e Wi —0.225 —0.115
Subjective norm«PBC (0.3]7%%% 0.269 0.364
Subjective norm« Attitude > PBC ~0.076%** ~0.116 ~(.036
Subjective norm+« Subjective Norm X PBC —().17g**=* —0.251 —0.104
Subjective norm+ Intention X PBC —0.090**=* —(.130 —(.051
PBC«Attitude X PBC —(.226%** —(.289 ~0.162
PBC+«+Subjective Norm X PBC — (. 1§ ##E —0.254 ~0.120
PBC«Intention X PBC —().343%%* —0.405 —0.281
Attitude X PBC«+Subjective Norm x PBC (.558%** 0.426 0.689
Attitude X PBC+«Intention X PBC (0.93] ##* 0.775 1.087
Subjective norm x PBC«Intention X PBC (.63]1 ##% 0.503 0.760

Note. P = standardized path coetficient; Wald Clgs = Wald 95% confidence interval of path coefficient; LL =
lower limit of Clgs; UL = upper limit of Clgs; Clgs = conventional 95% confidence interval; By = difference in
standardized path coetficient; PBC = perceived behavioral control.

Fp< 05, FEp< 0l FFF p < 001
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Limitations of MASEM

* Poor performance with small sample sizes
* Missing correlations assumed to be MAR or MCAR

* With TSSEM, the pooled correlation matrix may not
provide a realistic reflection of the actual correlation
matrix in any given study

 With OSMASEM, do not quantify the heterogeneity of the
SEM parameters (only the heterogeneity of the
correlation coefficients)

30



Summary

* Rigorous meta-analyses can play an
important role in evidence-based
decision-making in prevention

* Recent innovations in meta-analytic methods can help
address the types of complex questions facing the field
« Complex data structures
 Comparative effectiveness questions
* Theories of change and causal pathways

31
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