If you're a person with a disability or using assistive technology and are having difficulty accessing any of the content in this file, please contact the ODP at prevention@nih.gov.

Methods: Mind the Gap Webinar Series

Power Analyses to Plan Idiographic Clinical Trials, Illustrated for Prevention and Rare Diseases

Presented by:

Ty Ridenour, Ph.D., M.A. Stephen Tueller, Ph.D., M.S. RTI International

National Institutes of Health Office of Disease Prevention

Power Analyses to Plan Idiographic Clinical Trials, Illustrated with Prevention and Rare Diseases

Ty A. Ridenour & Stephen J. Tueller

www.rti.ora

Funded by NCATS (R21 TR002402) and RTI IR&D Innovation Grants

PersonAlyticsTM Team and Website: <u>https://personalytics.rti.org/</u>

RTI International is a registered trademark and a trade name of Research Triangle Institute.

Outline

- When to (not) use Idiographic Clinical Trials (ICTs)
- What are ICTs?
- Illustrations of ICTs
- Recent developments
- Power analysis software

Motivations for Idiographic Clinical Trials

- Small population or sample
- **In-the-field research**
- When withholding treatment is unethical
- **Active ingredients / processes**
- **Precision treatment**
- What works for whom
- **Rapid program evaluation**
- **Underserved populations**

When to Generally (not) Use ICTs

ICTs Generally Strong For:

- N = 1 results ("impact")
- **Comparative effectiveness**

All participants get novel treatment

Engagement / attrition

Intrapersonal processes / mechanisms

Real world effectiveness

"Active ingredients" research

Small population efficacy

ICTs Generally Limited For:

Large population efficacy

Acute illnesses

Change in traits / personality

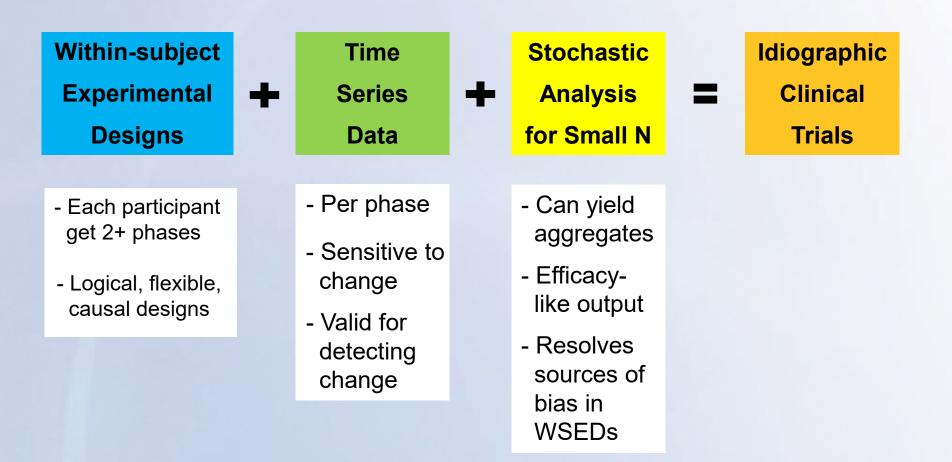
Few "waves"

Surveys / prevalence

Long interviews / questionnaires

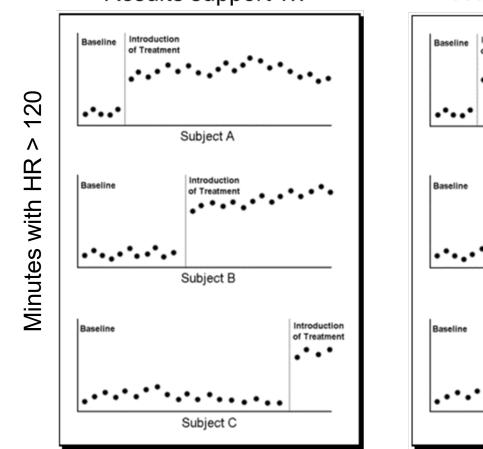
Note: Stigma among methodologists

What are Idiographic Clinical Trials?



Within-subject Experimental Designs

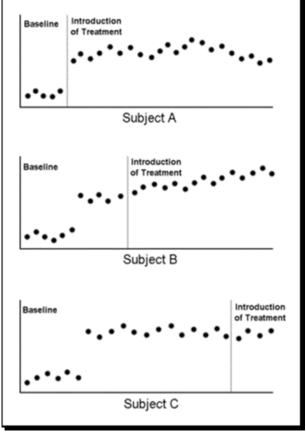
Most Common: Multiple Baseline Design



Time: Days

Results support Tx

Results don't support Tx

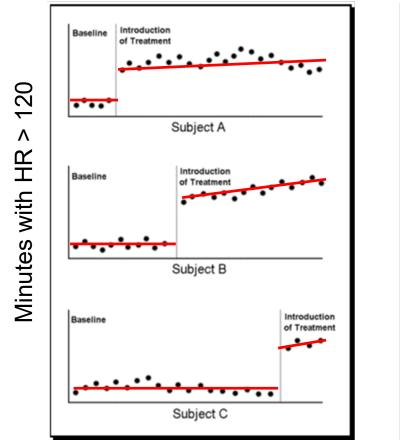


Time: Days

From: AllPsych; https://allpsych.com/research-methods/singlesubjectdesign/multiplebaselines/#.Vd30PvlVhBe

Within-subject Experimental Designs

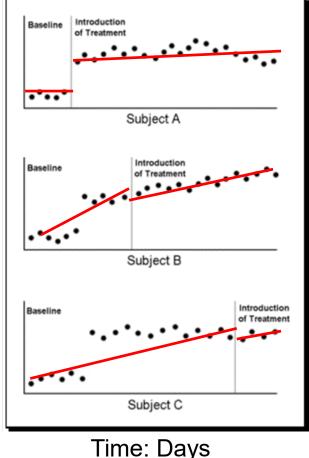
Most Common: Multiple Baseline Design



Results support Tx

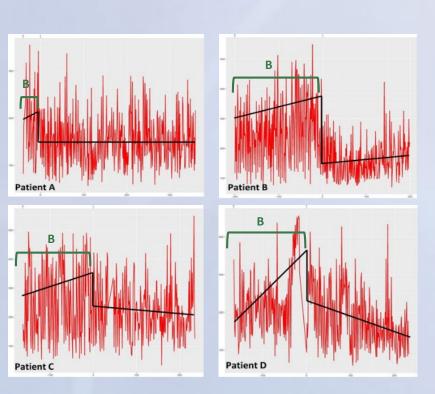
Time: Days

Results don't support Tx

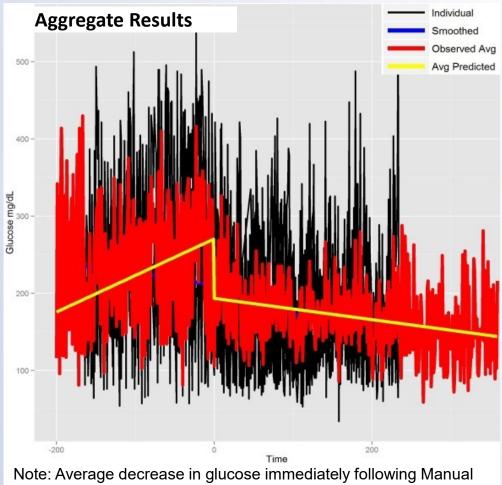


From: AllPsych; https://allpsych.com/research-methods/singlesubjectdesign/multiplebaselines/#.Vd30PvlVhBe

Illustration 1: Rigorous Pilot Study



Note: Y-axis is blood glucose in mg/dL. **B** = baseline phases. The treatment instant impact (without slope) in mg/dL is -49.0 for A, -152.9 for B, -45.0 for C, and -73.0 for D.



Pancreas = 77.13 mg/dL (p < .001). Smoothed model not shown.

From: Ridenour et al., 2013

Analytic Strategy: Intensive Hierarchical Regression

$$y_{ij} = \pi_{0i} + \pi_{1i} Time_j + \pi_2 (Time_j \times Phase_j) + \pi_3 Phase_j + \varepsilon_{ij}$$

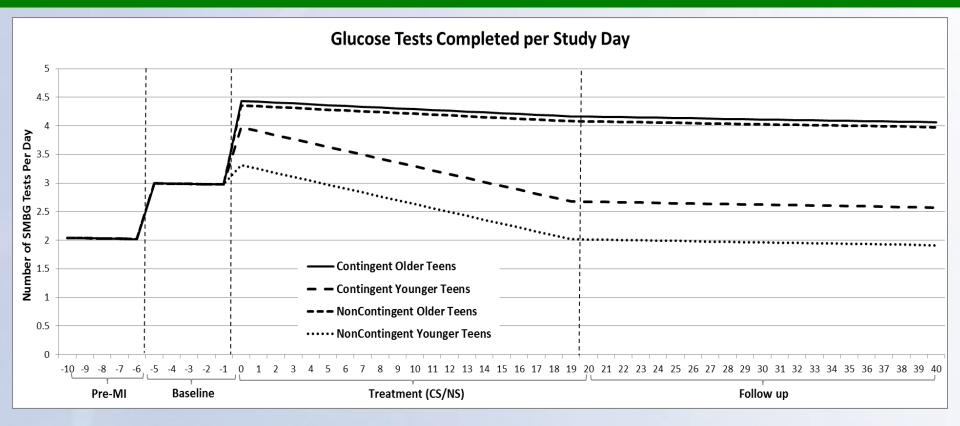
Where:

 y_{ij} represents outcomes for individual *i* at time *j* π_{0i} represents random intercepts π_{1i} *Time_j* represents random slopes *Phase_j* is dummy coded to estimate the effect of time separately by phase $\pi_2(Time_j \times Phase_j)$ is a fixed effect of time π_3Phase_j a fixed effect of difference in intercepts among phases ε_{ij} is residual variance term

Model assumes that during baseline the mean intercept = 0 and mean slope = 0; autoregression in data has been parsed out using the appropriate error covariance structure; and error is uncorrelated with random effects.

Can add term(s) to test subgroup differences and analyze covariates.

Illustration 2: Comparative Effectiveness Research



Daily Tests = 1.9885 - 0.00501 (per day) + 0.9805 (effect of MI) + 1.3240 (change in intercept at Treatment phase) - 0.06317 (per day of Treatment phase) + 1.0430 (additional intercept change for older teens during Treatment phase) + 0.6598 (additional intercept for CS) – 0.05378 (per day of Treatment phase for younger teens)

Analytic Strategy: Unified SEM

(2)	$\eta_i(t) = (A_i + A^g)\eta_i(t) +$	$(\Phi_{1,i} + \Phi_1^g)\eta_i(t-1) +$	- ζ ₁ (t)
)	
Variables to	Contemporaneous	Lagged relations	Error; unexplained
be explained	relations among	among variables	variance (matrix)
(vector	variables (matrix)	(matrix)	

Where:

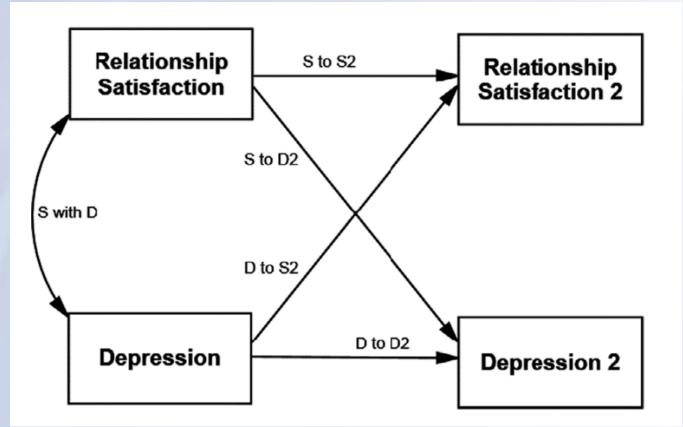
 $\eta_i(t)$ are the variables to be "explained" for individual *i* $(A_i + A^g)\eta_i(t)$ is a matrix of contemporaneous covariations among variables $(\Phi_{1,i} + \Phi_1^g) \eta_i(t-1)$ is a matrix of lagged covariations among variables $\zeta_1(t)$ is an error matrix

Notation, assumptions, and modelling strategy are based on the Group Iterative Multiple Model Estimation (GIMME) programs.

From: Beltz et al., 2016; Gates et al., 2012

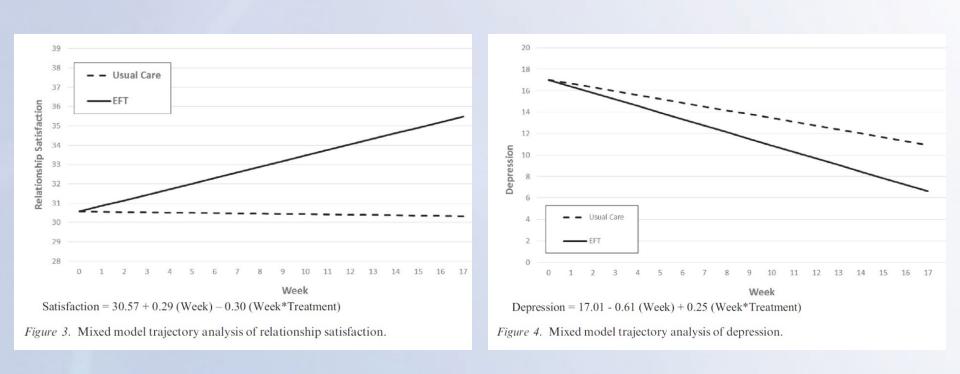
Illustration 3: Testing Mechanisms of Action

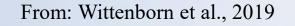
Hypothesized model of Emotion Focused Therapy outcomes



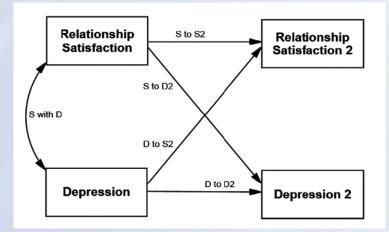
From: Wittenborn et al., 2019; Ridenour et al., 2016

Illustration 3: Outcomes for the Men





USEM: Testing of Fit to the Data



Fit Statistics of Three Competit	ng Subgroupings	s of Men		
Path parameters fixed equal	χ^2 , df	AIC	BCC	LR χ^2 , <i>df</i> vs. model 1
1 across all participants	1199.09, 171	1277.1	1305.0	-, -
2 within treatment arms	1183.18, 166	1271.2	1302.6	15.9, 5
3 within each of 4 clusters	1124.27, 151*	1242.3*	1284.4*	58.9, 20*

AIC = Akakie's Information Criterion; BCC = Brown-Cudeck Criterion; LR = likelihoo ratio. Models 2 and 3 are not nested and thus were not compared using LR χ^2 .

*The best fitting model indicated by the fit statistic.

Source:

https://www.researchgate.net/publication/268146083_Demonstration_of_Two_Traditional_Statistical_Techni ques_for_Use_with_Small_Sample_within-

Person Experiments Unified Structural Equations Modeling and Mixed Model Trajectory Analysis

USEM: Differential Treatment Responses

Table 4

Standardized Path Coefficients of the Four-cluster Solution for Men

Aggregate estimates II		Autocorr	elation	Cross-lag	Cross-lag paths		Study arm
	ID	$S \rightarrow S_2$	$D \rightarrow D_2$	$S \rightarrow D_2$	$D \rightarrow S_2$	Cluster path characteristics	
Cluster 1:	20	-0.02	0.64	-0.30	-0.96	Autocorrelation in depression only; Granger	UC
$S \rightarrow S_2 = 0.03;$	25	-0.05	0.71	-0.13	-0.56	causality from depression to satisfaction	UC
$D \rightarrow D_2 = 0.26;$	27	-0.08	0.71	0.04	-0.54		EFT
$S \rightarrow D_2 = -0.37;$							
$D \rightarrow S_2 = -0.35$							
Cluster 2:	11	1.09	0.01	-0.69	0.26	Autocorrelation in satisfaction only;	EFT
$S \rightarrow S_2 = 0.77;$	21	0.50	-0.09	-0.83	-0.40	Granger causality from satisfaction to	EFT
$D \rightarrow D_2 = 0.02;$	26	0.47	0.05	-0.39	-0.28	depression; lesser sequence from	UC
$S \rightarrow D_2 = -0.71;$						depression to satisfaction	
$D \rightarrow S_2 = -0.05$							
Cluster 3:	8	0.16	0.50	0.31	-0.24	Moderate autocorrelation for depression;	UC
$\mathbf{S} \rightarrow \mathbf{S}_2 = 0.43;$	15	0.16	0.50	0.00	-0.20	small-to-nil cross-lagged correlations	EFT
$D \rightarrow D_2 = 0.31;$	22	-0.33	0.33	0.11	-0.23		EFT
$S \rightarrow D_2 = -0.17;$							
$D \rightarrow S_2 = -0.14$							
Cluster 4:	2	0.65	0.64	-0.32	-0.20	Large autocorrelations for depression and	EFT
$S \rightarrow S_2 = 0.40;$	3	0.86	0.76	-0.19	0.01	satisfaction; moderate-to-nil cross-lagged	EFT
$D \rightarrow D_2 = 0.50;$	16	0.54	0.90	-0.04	-0.45	correlations	UC
$S \rightarrow D_2 = -0.17;$	23	0.63	0.91	-0.02	0.19		UC
$D \rightarrow S_2 = -0.14$	28	0.55	0.76	0.12	0.05		EFT

Note. S = relationship satisfaction; D = depression. Model parameters of one participant (ID 24) did not fit into any of the clusters; they were -0.71, 0.07, 2.23, and -0.09, respectively.

Source:

https://www.researchgate.net/publication/268146083_Demonstration_of_Two_Traditional_Statistical_Techniques_for_Use_with_Small_Sam ple within-Person Experiments Unified Structural Equations Modeling and Mixed Model_Trajectory_Analysis

From: Wittenborn et al., 2019

(Some) Recent Advances for ICTs

Understanding ICT outcomes as "factuals" & "counterfactuals": Daza et al., 2018

Simulations to inform study design: Blackston et al., 2019; Duan et al., 2013; Percha et al., 2019; Tueller et al., 2022

Understanding patient preferences for study designs (by illness): Cheung et al., 2020; Sacristán et al., 2021

Alternative designs and analytic strategies: Howe et al., 2010; Liao et al., 2021; Nahum-Shani et al., 2015

Causal mediation analysis: Special issue (2022) in *Evaluation* & *the Health Professions*: Miočević et al., 2022

Some Resources

Stats-of-1: Inference for the Individual References, links to useful tools

https://statsof1.org/resources/#sample-size--statistical-power

International Collaborative Network

https://www.nof1sced.org/

Single Case Design Masked Visual Analysis Data visualization and sharing apps <u>https://singlecasemva.app/</u>

Ksana Health data visualization apps https://ksanahealth.com/ears/

Evolving Resource: *PersonAlytics*[™]

Statistical and power analysis programs to support ICTs

Automate certain analytic processes

Support simulation research

Provide GUI interface for users that don't code in R

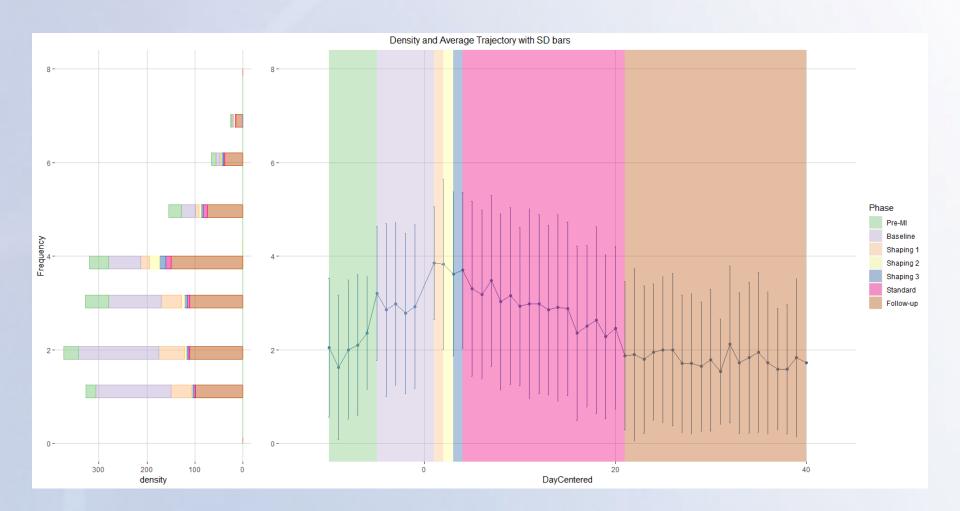
Evolve with methodological developments

Website: https://personalytics.rti.org/

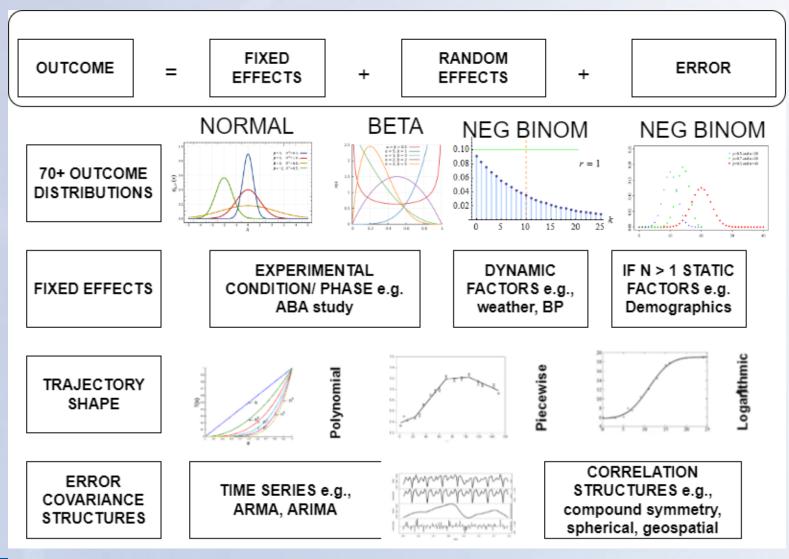
PersonAlytics R Package

- Analytics for N-of-1 and small N intensive longitudinal designs, idiographic clinical trials (ICT), and interrupted time series <u>https://github.com/ICTatRTI/PersonAlytics</u>
- Single subject data: Linear ARMA models
- Small N data: Mixed effects models (MLM/HLM/GCM)
 - Linear mixed effects model
 - Generalized additive models for location, scale and shape (70+ distributions)
- Mixed effects modeling options
 - Standard MLM/HLM with polynomial orders of time (time, time², time³)
 - Piecewise growth model
 - Simultaneous estimate of phase and group specific MLM/HLM/GCM
- Data visualization
- Finite population correction (FPC)

Visualizing ICT Data



Mixed Effects and Time Series Modeling for N=1, small N, and ICT



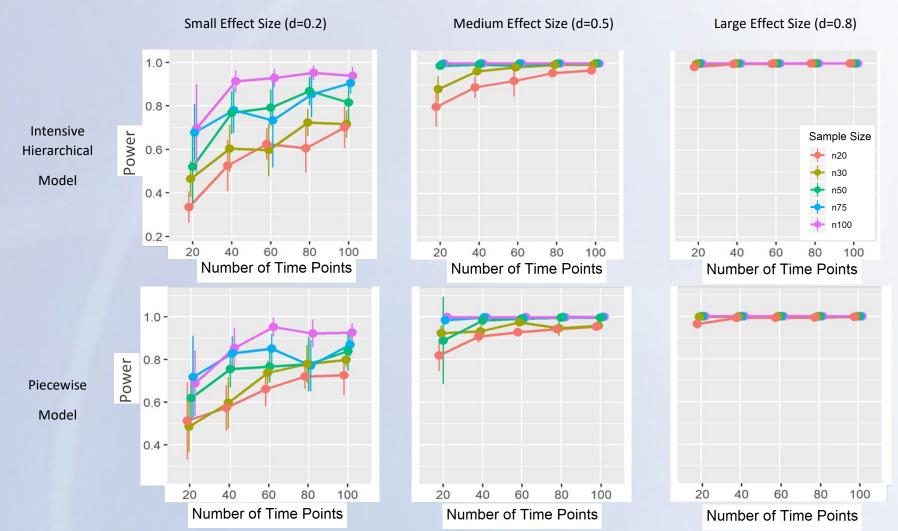
Modeling Process Automation Features

- Model selection using AIC or BIC
- All model selection uses ML, final model is fit with REML
- Automated tasks
 - Residual correlation structure selection
 - ARMA(p, q) for all possible combinations of p & q
 - User specified p & q
 - Time structure selection
 - Polynomial (time, time², time³, etc.)
 - Pending feature: estimating polynomial time structure within each phase
 - Standardization of outcomes, predictors, or both
 - Centering of the time variable
 - Outcome distribution selection

PersonAlyticsPower R Package

- Power Analysis for N-of-1 and small N intensive longitudinal designs, idiographic clinical trials (ICT), and interrupted time series
- Simulation based power analysis for any number of phases or groups
- Binary and normal outcomes (other distributions in development)
- User inputs are average intercepts and slopes in each phase
 and each group with standardized effect size differences
- Web based GUI in development
- <u>https://github.com/ICTatRTI/PersonAlyticsPower</u>

PersonAlytics Power Analysis



Power Analyses to Plan Idiographic Clinical Trials, Illustrated with Prevention and Rare Diseases

Ty A. Ridenour, Ph.D., M.P.E. Developmental Behavioral Epidemiologist, RTI International <u>TRidenour@rti.org</u>

Stephen J. Tueller, Ph.D. Senior Research Statistician, RTI International <u>STueller@rti.org</u>

Funded by NCATS (R21 TR002402) and RTI IR&D Innovation Grants

www.rti.org

References

- Beltz, A. M., Wright, A. G., Sprague, B. N., & Molenaar, P. C. (2016). Bridging the nomothetic and idiographic approaches to the analysis of clinical data. *Assessment*, 23, 447-458.
- Blackston, J. W., Chapple, A. G., McGree, J. M., McDonald, S., & Nikles, J. (2019) Comparison of aggregated N-of-1 trials with parallel and crossover randomized controlled trials using simulation studies. In *Healthcare*, 7, 137. MDPI.
- Cheung, Y. K., Wood, D., Zhang, K., Ridenour, T. A., Derby, L., St. Onge, T., Duan, N., Duer-Hefele, J., Davidson, K.W., Kronish, I. and Moise, N., (2020). Personal preferences for personalised trials among patients with chronic diseases: an empirical Bayesian analysis of a conjoint survey. *BMJ Open*, 10, e036056.
- Daza, E. J. (2018). Causal analysis of self-tracked time series data using a counterfactual framework for N-of-1 trials. *Methods of Information in Medicine*, 57(S 01), e10–e21.
- Duan, N., Kravitz, R. L., & Schmid, C. H. (2013). Single-patient (N-of-1) trials: A pragmatic clinical decision methodology for patient centered comparative effectiveness research. *Journal of Clinical Epidemiology*, 66, S21–S28.
- Gates, K. M., & Molenaar, P. C. (2012). Group search algorithm recovers effective connectivity maps for individuals in homogeneous and heterogeneous samples. *NeuroImage*, *63*, 310-319.
- Howe, G. W., Beach, S. R., & Brody, G. H. (2010). Microtrial methods for translating gene-environment dynamics into preventive interventions. *Prevention Science*, *11*, 343–354.
- Liao, Z., Qian, M., Kronish, I. M., & Cheung, Y. K. (2021). Analysis of N-of-1 trials using Bayesian distributed lag model with autocorrelated errors. *arXiv preprint arXiv:2112.13991*.
- Miočević, M., Moeyaert, M., Mayer, A., & Montoya, A. K. (2022). Causal Mediation Analysis in Single Case Experimental Designs: Introduction to the Special Issue. *Evaluation and the Health Professions*, 45, 3-7.

References (cont.)

- Nahum-Shani, I., Hekler, E. B., & Spruijt-Metz, D. (2015). Building health behavior models to guide the development of just-in-time adaptive interventions: A pragmatic framework. *Health Psychology*, *34*(S), 1209.
- Percha, B., Baskerville, E. B., Johnson, M., Dudley, J. T., & Zimmerman, N. (2019). Designing Robust N-of-1 studies for precision medicine: Simulation study and design recommendations. *Journal of Medical Internet Research, 21*, e12641.
- Raiff BR, Barry VB, Jitnarin N, Ridenour TA. Internet-based incentives increase blood glucose testing with a non-adherent, diverse sample of teens with Type 1 Diabetes Mellitus. *Translational Behavioral Medicine* 2016, 6, 179-188.
- Ridenour TA, Pineo TZ, Maldonado-Molina MM, Hassmiller-Lich, K. (2013). Toward idiographic research in prevention science: Demonstration of three techniques for rigorous small sample research. *Prevention Science*, *14*, 267-278.
- Ridenour TA, Wittenborn AK, Raiff BR, Benedict N., Kane-Gill S. (2016). Illustrating idiographic methods for translation research: Moderation effects, natural clinical experiments, and complex treatment-by-subgroup interactions. *Translational Behavioral Medicine*, 6, 125-134.
- Sacristán, J. A., & Knottnerus, J. A. (2021). Individual point-of-care trials: a new approach to incorporate patient's preferences into personalized pragmatic clinical trials. *Journal of Clinical Epidemiology*, *130*, 152-155.
- Tueller, S., Ramirez, D., Cance, J. D., Ye, A., Wheeler, A. C., Fan, Z., Hornik, C. & Ridenour, T. A. (2022). Power analysis for idiographic (within-subject) clinical trials: Implications for treatments of rare conditions and precision medicine. *Behavior Research Methods*, 1-25.
- Wittenborn, A. K., Liu, T., Ridenour, T. A., Lachmar, E. M., Mitchell, E. A., & Seedall, R. B. (2019).
 Randomized controlled trial of emotionally focused couple therapy compared to treatment as usual for depression: Outcomes and mechanisms of change. *Journal of Marital and Family Therapy*, 45, 395-409.

