If you're a person with a disability or using assistive technology and are having difficulty accessing any of the content in this file, please contact the ODP at prevention@nih.gov.

Methods: Mind the Gap

Webinar Series

Regression Discontinuity Designs

Presented by:

Matias D. Cattaneo, Ph.D. Princeton University

National Institutes of Health Office of Disease Prevention Webinar on Regression Discontinuity Designs Methods: Mind the Gap Webinar Series Office of Disease Prevention, National Institutes of Health

Matias D. Cattaneo

Princeton University

https://cattaneo.princeton.edu/

January 17, 2024

Complementary materials available at https://rdpackages.github.io/

Outline

¹ Designs and Frameworks

RD Plots: Visualization Methods

Estimation and Inference: Local Polynomial Methods

Estimation and Inference: Local Randomization Methods

Falsification and Validation

Causal Inference and Program Evaluation

- Main goal: learn about treatment effect of policy or intervention
- If treatment randomization available → easy to estimate effects
- If treatment randomization not available → observational studies
 - Selection on observables.
 - Instrumental variables, etc.

Regression discontinuity (RD) design

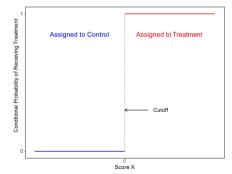
- Simple assignment, based on known external factors
- Objective basis to evaluate assumptions
- Easy to falsify and interpret.
- Careful: very local!

Regression Discontinuity Design

- Units receive a **score** (X_i) .
- A treatment is assigned based on the score and a known **cutoff** (c).

The treatment is:

- given to units whose score is greater than the cutoff.
- withheld from units whose score is less than the cutoff.
- Under assumptions, the abrupt change in the probability of treatment assignment allows us to learn about the effect of the treatment.



RD Designs: Taxonomy

Frameworks.

- Identification: Continuity/Extrapolation, Local Randomization.
- Score: Continuous, Many Repeated, Few Repeated.

Settings.

- Sharp, Fuzzy, Kink, Kink Fuzzy.
- Multiple Cutoff, Multiple Scores, Geographic RD.
- Dynamic, Continuous Treatments, Time, etc.

Parameters of Interest.

- ▶ Average Effects, Quantile/Distributional Effects, Partial Effects.
- Heterogeneity, Covariate-Adjustment, Differences, Time.
- Extrapolation.

RCTs vs. (Sharp) RD Designs

Notation:
$$(Y_i(0), Y_i(1), X_i), i = 1, 2, ..., n$$
.

Treatment: $T_i \in \{0, 1\}, \quad T_i \text{ independent of } (Y_i(0), Y_i(1), X_i).$

Data:
$$(Y_i, T_i, X_i), i = 1, 2, ..., n$$
, with
f
 $Y_i = \begin{array}{c} f \\ Y_i(0) \\ Y_i(1) \end{array}$ if $T_i = 0$
 $Y_i(1)$

Average Treatment Effect:

$$\tau_{\text{ATE}} = \mathsf{E}[Y_i(1) - Y_i(0)] = \mathsf{E}[Y_i|T = 1] - \mathsf{E}[Y_i|T = 0]$$

RCTs vs. (Sharp) RD Designs

- **Notation**: $(Y_i(0), Y_i(1), X_i), i = 1, 2, ..., n, X_i$ score.
- **Treatment**: $T_i \in \{0, 1\}, \quad T_i = (X_i \ge c), \quad c \text{ cutoff.}$

Data:
$$(Y_i, T_i, X_i), i = 1, 2, ..., n$$
, with

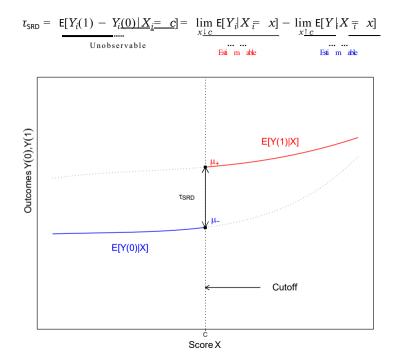
$$f \\
Y_i = Y_i(0) \\
Y_i(1) \\
if T_i = 1$$

• Average Treatment Effect at the cutoff (Continuity-based):

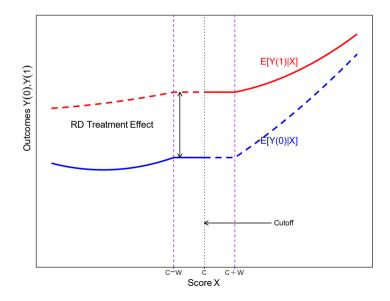
$$\tau_{SRD} = E[Y_i(1) - Y_i(0) | X_i = c] = \lim_{x \downarrow c} E[Y_i | X_i = x] - \lim_{x \downarrow c} E[Y_i | X_i = x]$$

• Average Treatment Effect in a neighborhood (LR-based):

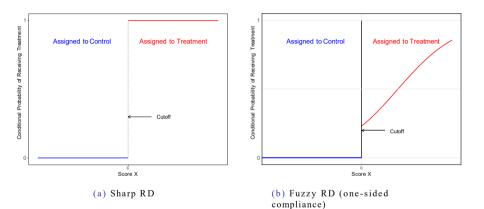
$$\tau_{LR} = \frac{1}{N_{W}} \sum_{X_{i} \in W} \mathsf{E}[Y_{k}(1) - Y_{k}(0) | X_{i} \in \mathsf{W}] = \frac{1}{N^{1}} \sum_{X_{i} \in W, T_{i}=1} Y_{i} - \frac{1}{N_{0}} \sum_{X_{i} \in W, T_{i}=0} Y_{i}$$



 T_i independent of $(Y_i(0), Y_i(1))$ for all $X_i \in W= [c - w, c + w]$ + exclusion restriction



Fuzzy RD Designs



Fuzzy RD Designs

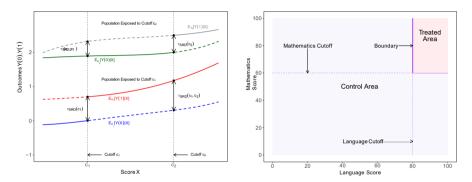
Imperfect compliance.

- ▶ probability of receiving treatment changes at *c*, but not necessarily from 0 to 1.
- Canonical Parameter:

$$\tau_{FRD} = \frac{E[(Y_i(1) - Y_i(0)(D_i(1) - D_i(0))|X_i = c]]}{E[D_i(1)|X_i = c] - E[D_i(0)|X_i = c]}$$
$$= \frac{\lim_{x \to c} E[Y_i|X_i = x] - \lim_{x \to c} E[Y_i|X_i = x]}{\lim_{x \to c} E[D_i|X_i = x] - \lim_{x \to c} E[D_i|X_i = x]}$$

- Similarly for Local Randomization framework.
- Different interpretations under different assumptions.

Multi-cutoff, Multi-Score, Geographic RD Designs



(a) Multi-cutoff:

(b) Multi-score: $\tau_{\text{SRD}}(x, c) = \mathsf{E}[Y_i(1) - Y_i(0)|X_i = x, C_i = c] \qquad \tau_{\text{SRD}}(x_1, x_2) = \mathsf{E}[Y_i(1) - Y_i(0)|X_{1i} = x_1, X_{2i} = x]$

Highlights and Main Takeaways

- RD designs exploit "variation" near the cutoff.
- Causal effect is different (in general) than RCT.
- No "overlap" (sharp) so extrapolation or exclusion is unavoidable.
- Graphical analysis is both very useful and very dangerous.
- Need to work with data near cutoff \Rightarrow bandwidth or window selection.
- Many design-specific falsification/validation methods.

Outline

Designs and Frameworks

2 RD Plots: Visualization Methods

Estimation and Inference: Local Polynomial Methods

Estimation and Inference: Local Randomization Methods

Falsification and Validation

RD Packages: Python, R, Stata

https://rdpackages.github.io/

rdrobust: estimation, inference and graphical presentation using local polynomials, partitioning, and spacings estimators.

rdrobust, rdbwselect, rdplot.

• **rddensity**: discontinuity in density tests (manipulation testing) using both local polynomials and binomial tests.

rddensity, rdbwdensity.

rdlocrand: covariate balance, binomial tests, randomization inference methods (window selection & inference).

rdrandinf, rdwinselect, rdsensitivity, rdrbounds.

rdmulti: multiple cutoffs and multiple scores.

rdpower: power, sample selection and minimum detectable effect size.

Empirical Illustration: Head Start (Ludwig and Miller, 2007, QJE)

Problem: impact of Head Start on Infant Mortality

Data:

- Y_i = child mortality 5 to 9 years old
- T_i = whether county received Head Start assistance
- $X_i = 1960$ poverty index (c = 59.1984)
- Z_i = see database.

Potential outcomes:

- $Y_i(0)$ = child mortality if had not received Head Start
- $Y_i(1) =$ child mortality if **had received** Head Start

Causal Inference:

$$Y_i(0) /= Y_i | T_i = 0$$
 and $Y_i(1) /= Y_i | T_i = 1$

RD Plots

Main ingredients:

- Global smooth polynomial fit.
- Binned discontinuous local-means fit.
- Main goals:
 - Graphical (heuristic) representation.
 - Detention of discontinuities.
 - Representation of variability.
- Tuning parameters:
 - Global polynomial degree.
 - Location (ES or QS) and number of bins.

Great to convey ideas but horrible to draw conclusions.

Estimation and Inference Methods

Continuity/Extrapolation: Local polynomial approach.

- Localization: bandwidth selection (trade-off bias and variance).
- Point estimation: "flexible" (nonparametric).
- Inference: robust bias-corrected methods.

Local Randomization: finite-sample and large-sample inference.

- Localization: window selection (via local independence implications).
- Point estimation: parametric, finite-sample (Fisher) or large-sample (Neyman/SP).
- Inference: randomization inference (Fisher) or large-sample (Neyman/SP).

Many refinements and other methods exist (EL, Bayesian, Uniformity, etc.).

- Do not offer much improvements in applications.
- Can be overly complicated (lack of transparency).
- Can depend on user-chosen tuning parameters (lack of replicability).

Outline

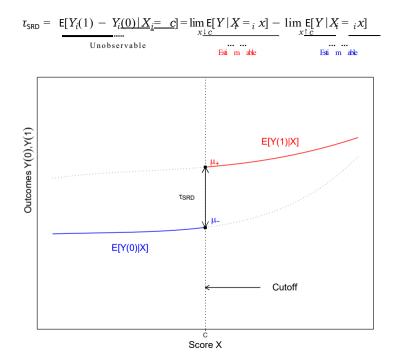
Designs and Frameworks

RD Plots: Visualization Methods

3 Estimation and Inference: Local Polynomial Methods

Estimation and Inference: Local Randomization Methods

Falsification and Validation



Continuity/Extrapolation: Local Polynomial Methods

- Global polynomial regression: **not recommended**.
 - Runge's Phenomenon, counterintuitive weights, overfitting, lack of robustness.
- Local polynomial regression: captures idea of "localization".

Choose low poly order (p) and weighting scheme $(K(\cdot))$

Choose bandwidth h: MSE-optimal or CE-optimal

Construct point estimator \hat{t} (MSE-optimal $h=\Rightarrow$ optimal estimator)

Conduct robust bias-corrected inference (CE-optimal $h=\Rightarrow$ optimal distributional approximation)

Local Polynomial Methods

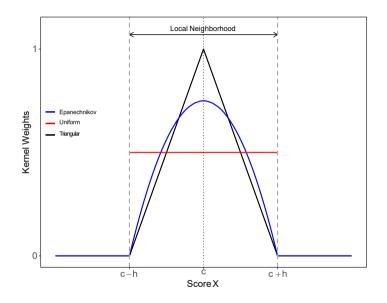
- **Idea**: approximate regression functions for control and treatment units *locally*.
- "Local-linear" (p = 1) estimator $(w / weights K(\cdot))$:

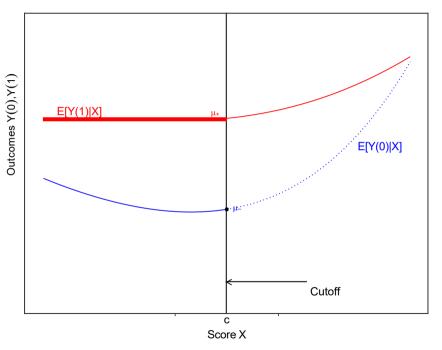
$$\begin{array}{c|c} -h \leq X_i < c : \\ Y_i = a_- + (X_i - c) \cdot \beta_- + \varepsilon_{-,i} \end{array} \end{array} \begin{array}{c|c} c \leq X_i \leq h : \\ Y_i = a_+ + (X_i - c) \cdot \beta_+ + \varepsilon_{+,i} \end{array}$$

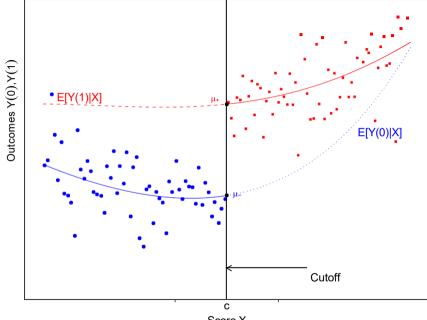
- Treatment effect (at the cutoff): $\tau_{SRD}(h) = \alpha_{+} \alpha_{-}$
- Can be estimated using linear models (w/ weights $K(\cdot)$):

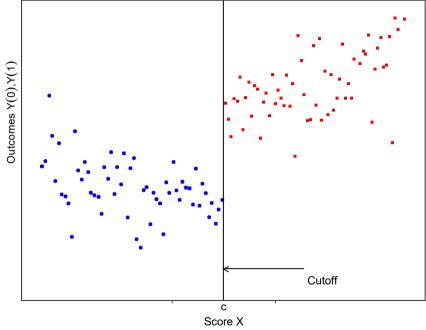
$$Y_i = a + \tau_{\mathsf{SRD}} \cdot T_i + (X_i - c) \cdot \beta_1 + T_i \cdot (X_i - c) \cdot \gamma_1 + \varepsilon_i, \qquad |X_i - c| \le h$$

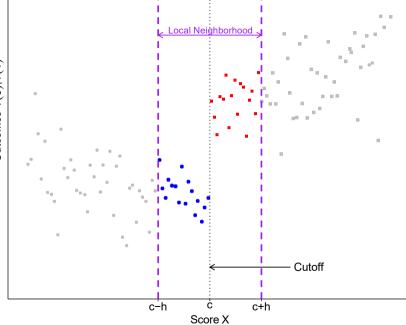
Given p, K, h chosen \Rightarrow weighted least squares estimation.



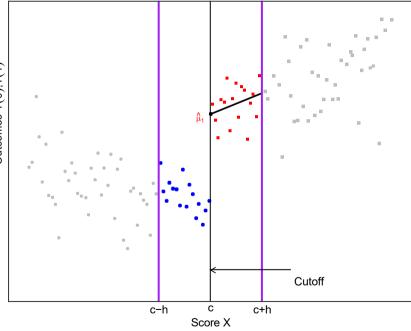




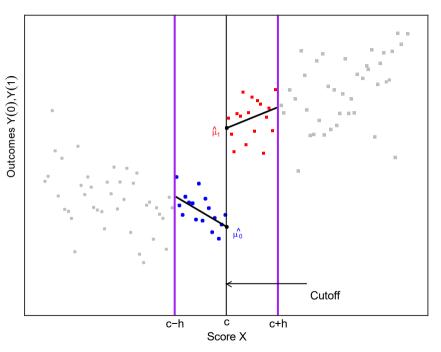


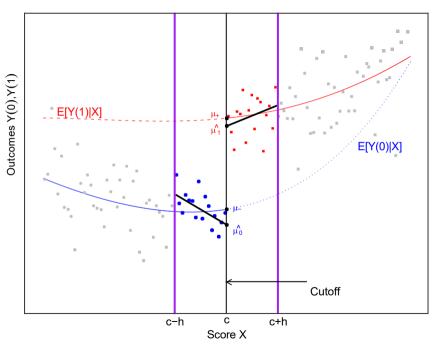


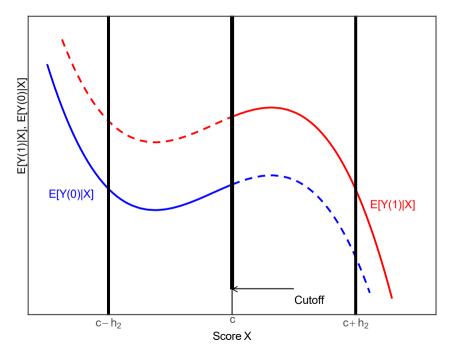
Outcomes Y(0),Y(1)

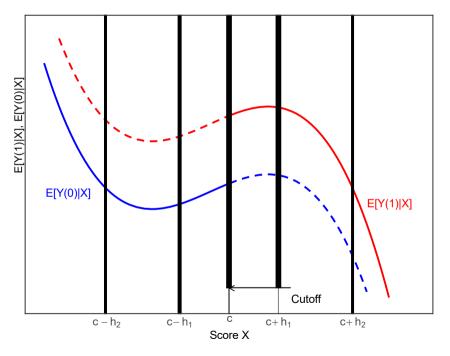


Outcomes Y(0),Y(1)









Local Polynomial Methods: Choosing bandwidth (p = 1)

Mean Square Error Optimal (MSE-optimal).

$$h_{\text{MS}} = C_{\text{MS}}^{1/5} \cdot n^{-1/5} \qquad C_{\text{MS}} = C(K) \cdot \frac{\text{Var}(\hat{\tau}_{\text{SRD}})}{\text{Bias}(\hat{\tau}_{\text{SRD}})^2}$$

Coverage Error Optimal (CE-optimal).

$$h_{\rm CE} = C_{\rm CE}^{1/4} \cdot n^{-1/4} \qquad C_{\rm CE} = C(K) \cdot \frac{\operatorname{Var}(\tilde{\tau}_{\rm SRD})}{|\operatorname{Bias}(\tilde{\tau}_{\rm SRD})|}$$

.....

Key idea:

► Trade-off bias and variance of *r*[^]_{SRD}(*h*). Heuristically:

 $\uparrow \operatorname{Bias}(\hat{r}_{\operatorname{SRD}}) = \Rightarrow \qquad \downarrow \hat{h} \qquad \text{and} \qquad \uparrow \operatorname{Var}(\hat{r}_{\operatorname{SRD}}) = \Rightarrow \qquad \uparrow \hat{h}$

- Implementations: IK first-generation while CCT second-generation plug-in rule. They differ in the way Var(r^{*}_{SRD}) and Bias(r^{*}_{SRD}) are estimated.
- Rule-of-thumb: $h_{CE} \propto n^{1/20} \cdot h_{MSE}$.

Conventional Inference Approach

• "Local-linear" (p = 1) estimator $(w / weights K(\cdot))$:

$$-h \le X_i < c:$$

$$Y_i = a_- + (X_i - c) \cdot \beta_- + \varepsilon_{-,i}$$

$$c \le X_i \le h:$$

$$Y_i = a_+ + (X_i - c) \cdot \beta_+ + \varepsilon_{+,i}$$

• Treatment effect (at the cutoff): $\tau_{SRD}(h) = \alpha_{+}^{-} - \alpha_{-}^{-}$

• Construct usual t-test. For $H_0: \tau_{SRD} = 0$,

$$T(h) = \frac{\hat{\mathcal{L}}_{SRD}}{\hat{\nabla}} = \frac{\hat{\alpha}_{+} - \hat{\alpha}_{-}}{\hat{\nabla}_{+} + \hat{\nabla}_{-}} \approx_{d} \mathsf{N} \quad (0, 1)$$

■ Na[°]ive 95% Confidence interval:

$$I(h) = \hat{\tau_{SRD}} \pm 1.96 \cdot \hat{V}$$

Robust Bias Correction Approach

Key Problem:

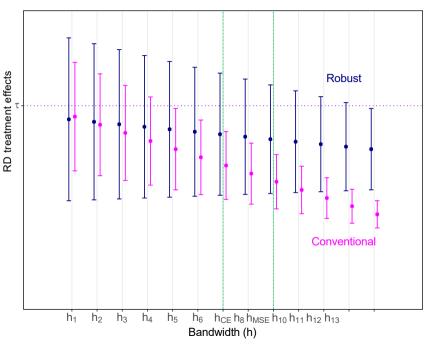
$$T(h_{\text{MSE}}) = \frac{\hat{\tau}_{\text{SRD}}}{\hat{V}} \approx_{d} N(B, 1) /= N(0, 1)$$

- B captures bias due to misspecification error.
- RBC distributional approximation:

$$T^{\rm bc}(h) = \frac{\hat{\tau}_{\rm SRD} - \hat{B}}{\hat{V}} = \frac{\hat{\tau}_{\rm SRD} - B}{\hat{V}} + \frac{B - \hat{B}}{\hat{V}}$$
$$\approx_{d} N \frac{(1)}{(2)} \approx_{d} N \frac{(2)}{(2)}$$

- Bis constructed to estimate leading bias B, that is, misspecification error.
- **RBC** 95% Confidence Interval:

$$I_{\text{RBC}} = \hat{\tau}_{\text{SRD}} - \hat{B}^{\dagger} \pm 1.96 \cdot \hat{V} + \hat{W}^{\dagger}$$



Empirical Illustration: Head Start (Ludwig and Miller, 2007, QJE)

Problem: impact of Head Start on Infant Mortality

Data:

 Y_i = child mortality 5 to 9 years old T_i = whether county received Head Start assistance

 $X_i = 1960$ poverty index (c = 59.1984)

 $Z_i =$ see database.

Potential outcomes:

 $Y_i(0)$ = child mortality if **had not received** Head Start

 $Y_i(1)$ = child mortality if **had received** Head Start

Causal Inference:

 $Y_i(0) /= Y_i | T_i = 0$ and $Y_i(1) /= Y_i | T_i = 1$

 TABLE III

 Regression Discontinuity Estimates of the Effect of Head Start Assistance on Mortality

					Parametric	
Variable	Control mean	Nonj	Nonparametric estimator			Flexible quadratic
Bandwidth or poverty range		9	18	36	8	16
Number of observations (counties) with nonzero weight		527	961	2,177	484	863
Main results						
Ages 5–9, Head Start-related causes, 1973–1983	3.238	1.895 (0.980) [0.036]	1.198 (0.796) [0.081]	1.114 (0.544) [0.027]	2.201 2.55 (1.004) [0.022]	58 (1.261) [0.021]
Specification checks					1	
Ages 5-9, injuries, 1973-1983	22.303	0.195 (3.472) [0.924]	2.426 (2.476) [0.345]	0.679 (1.785) [0.755]	0.164 (3.380) [0.998]	0.775 (3.401) [0.835]
Ages 5–9, all causes, 1973–1983	40.232	3.416 (4.311) [0.415]	0.053 (3.098) [0.982]	1.537 (2.253) [0.558]	3.896 (4.268) [0.317]	2.927 (4.295) [0.505]
Ages 25+, Head Start-related causes, 1973–1983	131.825	2.204 (5.719) [0.700]	6.016 (4.349) [0.147]	5.872 (3.338) [0.114]	2.091 (5.581) [0.749]	2.574 (6.415) [0.689]

Outline

Designs and Frameworks

RD Plots: Visualization Methods

Estimation and Inference: Local Polynomial Methods

⁴Estimation and Inference: Local Randomization Methods

Falsification and Validation

Local Randomization Approach to RD Design

Key assumption: exists window W = [c - w, c + w] around cutoff where subjects are as-if randomly assigned to either side of cutoff:

Uoint probability distribution of scores for units in the W is known:

 $\mathsf{P}[\mathbf{X}_{\mathsf{W}} \leq \mathbf{x}] = F(\mathbf{x}), \qquad \text{for some known joint c.d.f. } F(\mathbf{x}),$

where X_W denotes the vector of scores for all *i* such that $X_i \in W$.

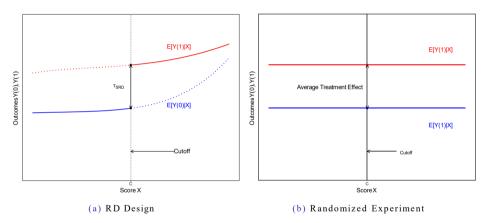
Potential outcomes not affected by value of the score:

 $Y_i(0, x) = Y_i(0),$ $Y_i(1, x) = Y_i(1),$ for all $X_i \in W$.

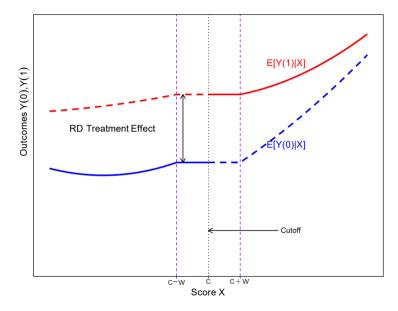
Note: stronger assumption than continuity-based approach.

- Potential outcomes are a constant function of the score (can be relaxed).
- Regression functions are not only continuous at c, but also completely unaffected by the running variable in W.

Experiment versus RD Design



Local Randomization RD



Local Randomization Framework

- **Key idea**: exists window W = [c w, c + w] around cutoff where subjects are as-if randomly assigned to either side of cutoff.
- **Two Steps** (analogous to local polynomial methods):

Select window W.

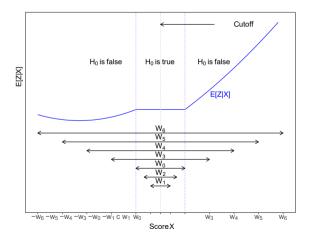
²Given window W, perform estimation and inference.

Challenges

- Window (neighborhood) selection.
- ▶ As-if random assumption good approximation only very near cutoff
- Small sample.

Step 1: Choose the window W

- Find neighborhood where (pre-intervention) covariate-balance holds.
- Find neighborhood where outcome and score independent.
- Domain-specific or application-specific choice.



Step 2: Finite-sample and Large-sample Methods in W

■ Given W where local randomization holds:

- Randomization inference (Fisher): sharp null, finite-sample exact.
- Design-based (Neyman): large-sample valid, conservative.
- Large-sample standard: random potential outcomes, large-sample valid.
- All methods require window (W) selection, and choice of statistic. First two also require choice/assumptions assignment mechanism. Covariate-adjustments (score or otherwise) possible.

Empirical Illustration: Head Start (Ludwig and Miller, 2007, QJE)

Problem: impact of Head Start on Infant Mortality

Data:

- Y_i = child mortality 5 to 9 years old
- T_i = whether county received Head Start assistance
- $X_i = 1960$ poverty index (c = 59.1984)
- Z_i = see database.

Potential outcomes:

- $Y_i(0)$ = child mortality if had not received Head Start
- $Y_i(1) =$ child mortality if **had received** Head Start

Causal Inference:

$$Y_i(0) /= Y_i | T_i = 0$$
 and $Y_i(1) /= Y_i | T_i = 1$

Outline

Designs and Frameworks

RD Plots: Visualization Methods

Estimation and Inference: Local Polynomial Methods

Estimation and Inference: Local Randomization Methods

5 Falsification and Validation

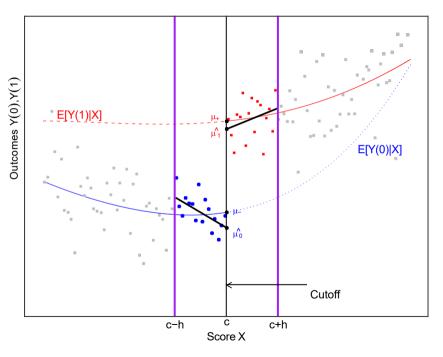
Falsification and Validation

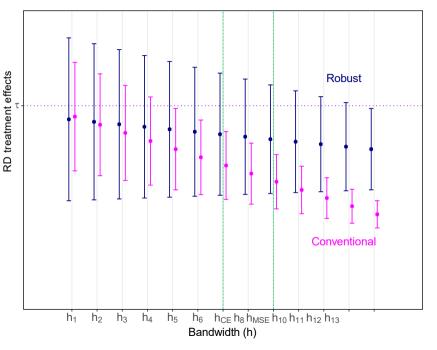
RD plots and related graphical methods:

- Always plot data: main advantage of RD designs. (Check if RD design!)
- Plot histogram of X_i (score) and its density. Careful: boundary bias.
- ▶ RD plot $E[Y_i|X_i = x]$ (outcome) and $E[Z_i|X_i = x]$ (pre-intervention covariates).
- Be careful not to oversmooth data/plots.

Sensitivity and related methods:

- Score density continuity: binomial test and continuity test.
- Pre-intervention covariate no-effect (covariate balance).
- Placebo outcomes no-effect.
- ▶ Placebo cutoffs no-effect: informal continuity test away from *c*.
- Donut hole: testing for outliers/leverage near **c**.
- Different bandwidths: testing for misspecification error.
- Many other setting-specific (fuzzy, geographic, etc.).





Empirical Illustration: Head Start (Ludwig and Miller, 2007, QJE)

Problem: impact of Head Start on Infant Mortality

Data:

- Y_i = child mortality 5 to 9 years old
- T_i = whether county received Head Start assistance
- $X_i = 1960$ poverty index (c = 59.1984)
- Z_i = see database.

Potential outcomes:

 $Y_i(0)$ = child mortality if **had not received** Head Start

 $Y_i(1)$ = child mortality if **had received** Head Start

Causal Inference:

 $Y_i(0) /= Y_i | T_i = 0$ and $Y_i(1) /= Y_i | T_i = 1$