Optimizing Behavioral mHealth Interventions Using Control Systems Engineering: The Control Optimization Trial

Presented by:
Daniel E. Rivera, Ph.D.
Arizona State University
Optimizing Behavioral mHealth Interventions using Control Systems Engineering: The Control Optimization Trial

Daniel E. Rivera, Ph.D.

Control Systems Engineering Laboratory
School for Engineering of Matter, Transport, and Energy (SEMTE)
Ira A. Fulton Schools of Engineering
Arizona State University

daniel.rivera@asu.edu

“Mind the Gap” Webinar Series
September 30, 2020
Talk Objectives

• To show how control systems engineering, coupled with system identification and behavior change theories, can lead to decision algorithms for achieving personalized, adaptive, and optimized behavioral interventions.

• Introduce the Control Optimization Trial (COT) as an effective means for achieving these interventions.
Some Caveats

• CAVEAT No. 1: As an engineer, *engineering sensibilities* will feature prominently in the talk.

• CAVEAT No. 2: Approach presented will be *idiographic* (i.e., single-subject) in nature.

• CAVEAT No. 3: The Control Optimization Trial is a concept that remains under development.

Helpful References

Control Systems Engineering Laboratory

CSEL
Just Walk “Modeling and More” Team
(NSF IIS-1449751, R01CA244777)

• Left: Eric Hekler (Director, Center for Wireless and Population Health, Qualcomm Center, and UCSD Design Lab; Dept. of Family and Public Health); Right: Just Walk team at ASU campus, 2016.
Health Mom Zone Study (R01 HL119245)

Dr. Danielle Symons Downs
Pennsylvania State University

Dr. Jennifer Savage Williams
Pennsylvania State University

- Danielle Symons Downs (Kinesiology, PI) and
 Jennifer Savage Williams (Nutritional Sciences, co-I).
Need for Personalized and *Perpetually Adapting* Interventions

- Understanding individual differences (across participants and over time) is critically important.
Healthy Mom Zone Study (R01 HL119245, Symons Downs, PI)
Representative Participants - Phase 2

- Red curve/bars represent Institute of Medicine (IOM) guidelines
- Physical activity responses for one (of 10) participants to a text message intervention as a proof-of-concept application of control systems engineering.

- Results show clear dynamic behavior and heterogeneity of response.
Outcome: Cigs Smoked

- Participant A, Active Drug with Counseling
- Participant B, Placebo with No Counseling

Mediator: Craving

- Participant “A” from drug group (blue); participant “B” from placebo group (red)
Common Features

- Lagged dynamic behavior showing distinctive characteristics (e.g., integrating, overdamped, inverse response)

- Outcome variables and other important variables can be measured intensively.

- Multiple intervention options and frequent decision points are available.

- Previous theory and evidence are available to guide intervention development (i.e., the question to answer is not “IF” but “HOW”).
Control Systems Engineering

• The field that relies on *dynamical systems models* to develop algorithms for adjusting system variables so that their behavior over time is transformed from *undesirable* to *desirable*.

• Control engineering plays an important part in many everyday life activities. Some examples of control systems engineering:
 - Cruise control and climate control in automobiles,
 - Home heating and cooling,
 - The artificial pancreas for Type-I diabetics,
 - Fly-by-wire systems in high-performance aircraft.

• Many other examples (including success stories and grand challenges) are presented in http://ieeecss.org/general/impact-control-technology.
From “Open-Loop” Operation to “Closed-Loop” Control

- A well-tuned control system will effectively transfer variability from an important system variable to a less important one.

The transfer of variance (as depicted in this diagram) represents one of the major benefits of control systems engineering.
Navigation Autopilot

• Courtesy of Eric Hekler

CSEL
Control Systems Engineering Laboratory
Control Engineering Approach

• Development of dynamical models from data via *system identification* (a method that can be informed by behavior change theories).

• Design of decision algorithms/decision “rules” through model-based methodologies such as Model Predictive Control (MPC).
• *Just Walk* is an idiographic mHealth intervention to promote physical activity in sedentary adults based on *control systems engineering*.

• *Just Walk v1* relies on an experimental procedure using *system identification* to build a *dynamical systems model* that helps explain how step goals, rewards, and external factors influence walking.

• *Just Walk v1* is *not* a fully optimized intervention, but represents the first phase of a *control optimization trial (COT)*, which is part of *Just Walk v2*.

• $N = 20$ participants, 90% female, mean age $= 47.25 \pm 6.16$ years, mean BMI $= 33.79 \pm 6.82 \text{ kg/m}^2$.
The intervention seeks to promote physical activity (e.g., walking/running) among inactive adults by adjusting *daily step goals* and *expected reward points*, with the ultimate goal of reaching 10,000 steps per day (on average) per week.

Behavioral Outcomes (examples):
- Self-Efficacy
- Outcome Expectancies

Environmental context (examples):
- Busyness,
- Stress,
- Weather,
- Weekday or weekend
Closing the Intervention Loop: *Just Walk*

The Control Optimization Trial (COT)

- A *informative* identification test provides the data needed to estimate a dynamical system model that can predict participant response to changes (in dosage and context).

- *Initiation* and *maintenance* accomplished by a decision algorithm ("controller") that relies on a dynamical model to decide the magnitude and timing of intervention components.
“Zippered” Multisine Inputs used in *Just Walk v1*

Box, Hunter, and Hunter (*Statistics for Experimenters*), “to find out what happens when you change something it is necessary to change it.”

- Goal range: doable (baseline median) to ambitious (2.5x baseline median).
- These are “pseudo-random”, statistically independent signals.
- 16-day cycles implemented, five or six per participant, over approximately 12 weeks.
Estimating Dynamical System Models

- Black-box, “ready-made” prediction-error models (e.g., ARX),

- Mechanistic, semi-physical models based on behavioral theories,
 - Theory of Planned Behavior
 - Social Cognitive Theory
ARX Model Estimation Procedure

- **Data Preprocessing**: The data is preprocessed for missing entries.

- **Discrete-time parametric modeling**: The filtered data is fitted to a multi-input AutoRegressive with eXternal input (ARX-[na nb nk]) parametric model:

\[
y(t) + \ldots + a_{n_a} y(t - n_a) = b_{11} u_1(t - n_k) + \ldots + b_{n_b 1} u_1(t - n_k - n_b + 1) \\
\vdots \\
+ b_{1i} u_i(t - n_k) + \ldots + b_{n_b i} u_i(t - n_k - n_b + 1) \\
\vdots \\
+ b_{1n_u} u_{n_u}(t - n_k) + \ldots + b_{n_b n_u} u_{n_u}(t - n_k - n_b + 1) + e(t)
\]

- **Validation**: Various measures used, among these the Normalized Root Mean Square Error (NRMSE) fit index:

\[
\text{model fit (\%)} = 100 \times \left(1 - \frac{||y(k) - \hat{y}(k)||_2}{||y(k) - \bar{y}||_2}\right)
\]

(1)

\(y(k)\) is the measured output, \(\hat{y}(k)\) is the simulated output, \(\bar{y}\) is the mean of all measured \(y(k)\) values, and \(|| \cdot ||_2\) indicates a vector 2-norm (\(||x||_2 \defeq \sqrt{x^T x}\)).
Time series plot showing seven selected input sequences (manipulated inputs & measured disturbances), predicted behavior (from an ARX black-box model), actual behavior, model overall fit, and estimation & validation cycles (1st, 2nd, and 5th for estimation; 3rd and 4th for validation).
Individualized ARX models from black-box system identification for three individuals: Goals, Expected Points, and Granted Points models; B: Predicted Busyness; S: Predicted Stress; T: Predicted Typical; W: Weekday-Weekend.

- Participant A shows no model fit improvement beyond a 4-input model including predicted stress (S).
- Participant B displays significant model fits only with the inclusion of the weekday-weekend input signal.
- Participant C shows no model fit improvement beyond the 3-input model (with goals driving the behavior-change).
• Lead behavioral scientists are Danielle Downs (Kinesiology/Obstetrics and Gynecology) and Jen Savage (Nutritional Sciences), Penn State University (1R01HL119245-01);

• Intervention components include dietary and physical activity (PA) education, individualized dietary and PA prescription, active learning, goal setting, and self monitoring (using records and PA monitors).

• The goal is to show the feasibility of an adaptive, time-varying intervention relying on control systems engineering concepts.

• Measures assessed daily, weekly, bi-weekly, or pre- and post-assessment.
CSEL
Control Systems Engineering Laboratory

Overall Schematic Representation
for the Adaptive GWG Intervention

TPB ≡ Theory of Planned Behavior

Energy Intake TPB Model

Physical Activity TPB Model

Maternal Energy Balance Model

Intervention Component Dosages

Decision Rules

Δξ_3

y_1

Energy Intake Self Regulation

Δξ_3

ξ_3

ξ_2

ξ_1

Diet

Fat-free Mass (FFM)

Fat Mass (FM)

Total Gestational Weight

TPB ≡ Theory of Planned Behavior

28

Any path diagram can be expressed into a corresponding fluid analogy described by a system of differential equations!
The conservation principle (Accumulation = Inflow – Outflow) leads to the following system of differential equations:

\[
\begin{align*}
\tau_1 \frac{d\eta_1}{dt} &= \gamma_{11}\xi_1(t - \theta_1) - \eta_1(t) + \zeta_1(t) \\
\tau_2 \frac{d\eta_2}{dt} &= \gamma_{22}\xi_2(t - \theta_2) - \eta_2(t) + \zeta_2(t) \\
\tau_3 \frac{d\eta_3}{dt} &= \gamma_{33}\xi_3(t - \theta_3) - \eta_3(t) + \zeta_3(t) \\
\tau_4 \frac{d\eta_4}{dt} &= \beta_{41}\eta_1(t - \theta_4) + \beta_{42}\eta_2(t - \theta_5) + \beta_{43}\eta_3(t - \theta_6) - \eta_4(t) + \zeta_4(t) \\
\tau_5 \frac{d\eta_5}{dt} &= \beta_{54}\eta_4(t - \theta_7) + \beta_{53}\eta_3(t - \theta_8) - \eta_5(t) + \zeta_5(t),
\end{align*}
\]

where:
\(\tau_1, \cdots, \tau_5\) are time constants,
\(\eta_1, \cdots, \eta_5\) are the inventories,
\(\xi_1(t) = b_1(t)e_1(t), \xi_2(t) = n_1(t)m_1(t), \xi_3(t) = c_1(t)p_1(t)\),
\(\gamma_{11}, \cdots, \gamma_{33}\) are the inflow resistances,
\(\beta_{41}, \cdots, \beta_{54}\) are the outflow resistances,
\(\theta_1, \cdots, \theta_7\) are time delays and \(\zeta_1, \cdots, \zeta_5\) are disturbances.
Closed Loop Illustration for GWG
Intervention Fluid Analogy (Energy Intake)

Decision Rules

Intervention Delivery Dynamics

Dosages of Intervention Components

Intervention Fluid Analogy

Self-regulator for GWG

Self-regulator for Diet

Dietary Record

Gestational Weight Gain Measurement

Energy Intake - Theory of Planned Behavior

\[EI-TPB = \text{Energy Intake - Theory of Planned Behavior} \]

PBC = Perceived Behavioral Control

SN = Subjective Norm

ATT = Attitude

Energy Balance:

FM: Fat Mass

FFM: Fat-Free Mass
HMZ TPB-PA Model Results (Phase 2 Participant)

Subjective Norm (η_2)

Perceived Behavioral Control (η_3)

Intention (η_4)

Behavior (η_5)

Baseline Intervention (base)

Intervention Step-up (up)

Gestational Age (ga)

PA: Physical Activity

PA - Inputs

PA - SN: Fit = 58%

PA - PBC: Fit = 56%

PA - INT: Fit = 68%

PA (kcal): Fit = 82%
SCT describes a behavioral change model in which individuals proactively self-reflect, self-regulate, and self-organize (Bandura, 1989).

Selected SCT components that are generated as a consequence of variation of external or internal stimuli (outputs) are:

- **Self-efficacy** (e.g. perceived confidence in one's ability)
- **Behavioral outcomes** (e.g. weight loss, physical pain)
- **Behavior** (e.g. physical activity, days of abstinence, cigarettes per day).

Selected variables that act as stimuli to promote (or relegate) behavior and other components (inputs) are:

- **Skills training**
- **Observed behavior (vicarious learning)**
- **Environmental context**
- **Internal and external cues** (e.g. triggers to behavior)

SCT Path Diagram
(from fluid analogy, TBM paper)

Fig. 3 | Path diagram of SCT based on fluid analogy in Fig. 1
Relying on inputs determined important from black-box (ARX) modeling, examine a reduced, parsimonious SCT structure.
Controller Functional Requirements

The decision algorithm/“controller” must:

- consider multiple outcomes,
- decide on multiple intervention dosages,
- incorporate both feedback and feedforward decision-making,
- incorporate constraint handling,
- manage categorical (i.e., discrete-valued) dosages.
Model Predictive Control (MPC) Conceptual Representation

\[
\min_{\Delta u(t) \ldots \Delta u(t+m-1)} J = \sum_{i=1}^{p} Q_e(i)(\hat{y}(t+i) - r(t+i))^2 + \sum_{i=1}^{m} Q_{\Delta u}(i)(\Delta u(t+i-1))^2
\]

- Take Tailoring Variables to Goal
- Penalize Changes in the Intervention Dosages
Conceptual representation of the closed-loop adaptive intervention, based on the simplified version of the SCT model; shows a subset of the measured/designed *Just Walk* signals.

Closed-Loop Intervention (includes Maintenance)

- HMPC algorithm is reconfigured during “maintenance” phases.
Adaptive GWG Intervention: Decision Rule Illustration

- **Time-varying, adaptive** intervention via decision rules involving:
 - augmentation/reduction of components following a certain dosage sequence;
 - at each decision point, only one component can be adjusted.

GWG evaluation

- **Meet GWG goal at study entry, get:** Baseline Intervention
 - Baseline
 - exceed GWG goal at study entry: Step Up

- **GWG evaluation**
 - Meet GWG goal: stay the course (or reduction)
 - exceed GWG goal: Step Up

assess GWG every couple weeks

- **Options**
 - Step down 1: reduction of PA component#
 - Step down 2: reduction of HE component*
 - Step down 3: reduction of goal setting

- **Adaptation**
 - Base Dosage for all components
 - Step up 1: 1st augmentation of HE component
 - Step up 2: 2nd augmentation of HE component
 - Step up 3: 1st augmentation of PA component
 - Step up 4: 2nd augmentation of PA component
 - Step up 5: 3rd augmentation of PA component

• MPC algorithm anticipates the need for dosage augmentations, because of its improved understanding of participant response as a result of the dynamical system model.
In the open-loop portion of the COT, augmentations in HE and PA active learning provide data from which a dynamical system model is obtained.
COT Future Plans

- The COT will be evaluated experimentally in Just Walk v2, which is being developed in fulfillment of the aims of R01CA244777.

- Clinical trial with $N = 386$ is planned; a myriad of activities (involving tech development, measurement, model development, clinical trails, recruitment and meaningful consent) are involved.

- An iterative, intelligent triangulation process is needed to achieve success.
How does this relate to machine learning?

• Machine learning is a very broad field, associated with many tasks beyond decision rules (e.g., classification, detection, etc.)

• Reinforcement learning is probably the closest parallel to control systems engineering; no “hostilities” exist between fields, just different perspectives and points of view.

• Benefits afforded in control systems engineering through:
 • use of behavioral theory to help define model structure.
 • experimental design (using multisines or step changes) to improve model accuracy and reliability.
 • controller robustness (through tuning) means that models need not be perfect to meet requirements.
Summary and Concluding Thoughts

• mHealth behavioral interventions represent an interesting (though challenging) class of control engineering applications, with significant impact on public health.

• Control systems engineering informs the design of decision “rules” and model development for optimized adaptive interventions.

• Behavioral theories allow “physics” to be part of the problem. Their use is a distinctive aspect of the control engineering approach.

• Aspirational goal is to establish the control optimization trial (COT) as a reliable means to build “perpetually adaptive” closed-loop mHealth interventions; this is the basis for Just Walk v2.
Support for this work has been provided by the Office of Behavioral and Social Sciences Research (OBSSR) of the National Institutes of Health and the National Institute on Drug Abuse (NIDA), and the National Heart, Lung, and Blood Institute (NHLBI) through grants R21 DA024266, K25 DA021173 and R01 HL119245.

Physical activity intervention work/Just Walk v1 was supported by the National Science Foundation-Smart and Connected Health program (EAGER IIS-1449751); Just Walk v2 is funded by NCI (R01CA244777).

Additional current activities that are relevant to this work include NCI (U01CA229445) and NLM (R01LM013107).

Former and current grad students and postdocs at ASU: César Martin Moreno (now at ESPOL-Ecuador), Elizabeth Korinek, Sayali Phatak, Kevin Timms, Sunil Deshpande, Penghong Guo, Mohammad Freigoun, and Alicia Magann.
Thank you for your attention!

https://isearch.asu.edu/profile/29494