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Talk Objectives 

• To show how control systems engineering, coupled with 
system identification and behavior change theories, can lead 
to decision algorithms for achieving personalized, adaptive, 
and optimized behavioral interventions. 

• Introduce the Control Optimization Trial (COT) as an 
effective means for achieving these interventions. 

3CSEL 
Control Systems Engineering Laboratory 



Control Systems Engineering Laboratory
CSEL

Some Caveats

• CAVEAT No. 1: As an engineer, engineering sensibilities  
will feature prominently in the talk. 

• CAVEAT No. 2: Approach presented will be idiographic  
(i.e., single-subject) in nature. 

• CAVEAT No. 3: The Control Optimization Trial is a concept 
that remains under development.
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Abstract 
Background: Adaptive behavioral interventions are individualized interventions that vary support based on a person's evolving 
needs. Digital technologies enable these adaptive interventions to function at scale. Adaptive interventions show great promise 
for producing better results compared with static interventions related to health outcomes. Our central thesis is that adaptive 
interventions are more likely to succeed at helping individuals meet and maintain behavioral targets if its elements can be iteratively 
improved via data-driven testing (ie, optimization). Control systems engineering is a discipline focused on decision making in 
systems that change over time and has a wealth of methods that could be useful for optimizing adaptive interventions. 
Objective: The purpose of this paper was to provide an introductory tutorial on when and what to do when using control systems 
engineering for designing and optimizing adaptive mobile health (mHealth) behavioral interventions. 
Overview: We start with a review of the need for optimization, building on the multiphase optimization strategy (MOST). We 
then provide an overview of control systems engineering, followed by attributes of problems that are well matched to control 
engineering. Key steps in the development and optimization of an adaptive intervention from a control engineering perspective 
are then summarized, with a focus on why, what, and when to do subtasks in each step. 
Implications: Control engineering offers exciting opportunities for optimizing individualization and adaptation elements of 
adaptive interventions. Arguably, the time is now for control systems engineers and behavioral and health scientists to partner to 
advance interventions that can be individualized, adaptive, and scalable. This tutorial should aid in creating the bridge between 
these communities. 

(J Med Internet Res 2018;20(6):e214)   doi:10.2196/jmir.8622 

KEYWORDS 
adaptive interventions; mHealth; eHealth; digital health; control systems engineering; behavior change; optimization; multiphase 
optimization strategy; physical activity; behavioral maintenance 
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Just Walk “Modeling and More” Team 
(NSF IIS-1449751, R01CA244777) 

• Left: Eric Hekler (Director, Center for Wireless and Population 
Health, Qualcomm Center, and UCSD Design Lab;  Dept. of Family 
and Public Health); Right: Just Walk team at ASU campus, 2016. 
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Health Mom Zone Study (R01 HL119245) 

Dr. Danielle Symons Downs Dr. Jennifer Savage Williams 
Pennsylvania State University Pennsylvania State University 

• Danielle Symons Downs (Kinesiology, PI) and   
Jennifer Savage Williams (Nutritional Sciences, co-I). 
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    Need for Personalized and Perpetually Adapting Interventions 

• Understanding individual differences (across participants and over 
time) is critically important. 
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Healthy Mom Zone Study (R01 HL119245, Symons Downs, PI) 
Representative Participants - Phase 2 

Intervention Participant A 
190 

167 lb 

166.3 lb 

181.6 lb 

0 50 100 150 200 250 
t (days) 

180 
W

 (l
b) 170 

160 

150 

140 

W
 (l

b)

Control Participant A
190 

140 lb 
140.7 lb 

172 lb 

0 50 100 150 200 250 
t (days) 

180 

150 

140 

170 

160 

Intervention Participant B 

W
 (l

b)
 

190 

154 lb 
154.8 lb 

161.6 lb 

0 50 100 150 200 250 
t (days) 

180 

W
 (l

b) 170 

160 

150 

140 

Control Participant B
190 

152 lb 

150.9 lb 

179.8 lb 

0 50 100 150 200 250 
t (days) 

180 

150 

140 

170 

160 

• Red curve/bars represent Institute of Medicine (IOM) guidelines 
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Physical Activity Response to Text Messages   
From: Conroy DE, Hojjatinia S, Lagoa CM, Yang C-H, Lanza ST, Smyth JM., Psychol. Sport Exerc. 2019; 41:172–80. 

Participant 610: Weekdays 

12 
Move more messages
Sit less messages
General facts messages 

0 100 200 300 400 500 600 
Time (minutes) 

St
ep

pi
ng

 ti
m

e 
be

ha
vi

or
 (m

in
ut

es
)

10 

8 

6 

4 

2 

0 

-2 

-4 

Participant 610: W  eekends 
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• Physical activity responses for one (of 10) participants to a text message 
intervention as a proof-of-concept application of control systems engineering.  

• Results show clear dynamic behavior and heterogeneity of response. 
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UW-CTRI Smoking Cessation Study 
McCarthy et al., Addiction, Vol. 103,  

pgs. 1521-1533, 2008 
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• Participant “A” from drug group (blue); participant “B” from placebo group (red) 
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 Common Features 

• Lagged dynamic behavior showing distinctive characteristics   
(e.g., integrating, overdamped, inverse response)  

• Outcome variables and other important variables can be measured 
intensively.  

• Multiple intervention options and frequent decision points are 
available.  

• Previous theory and evidence are available to guide intervention 
development (i.e., the question to answer is not “IF” but “HOW”). 
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  Control Systems Engineering 

• The field that relies on dynamical systems models to develop algorithms for 
adjusting system variables so that their behavior over time is transformed   
from undesirable to desirable.  

• Control engineering plays an important part in many everyday life activities.  
Some examples of control systems engineering : 

- Cruise control and climate control in automobiles, 

- Home heating and cooling, 

- The artificial pancreas for Type-I diabetics, 

- Fly-by-wire systems in high-performance aircraft. 
  

• Many other examples (including success stories and grand challenges) are 
presented in http://ieeecss.org/general/impact-control-technology. 
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    From “Open-Loop” Operation to “Closed-Loop” Control 

• A well-tuned control system will effectively transfer variability from an 
important system variable to a less important one. 

ControlledVariable 
Deviation 

(e.g.,Temperature, 
Steps Walked/day,Weight) 

Open-Loop 
(Before Control) 

ManipulatedVariable 
Deviation  

(e.g., Flowrate, 
Daily Step Goals, 

Maintenance Training 
Sessions) 

Closed-Loop 
Control 

The transfer of variance (as depicted in this diagram) represents one of the   
major benefits of control systems engineering. 
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Navigation Autopilot 

• Courtesy of Eric Hekler 
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  Control Engineering Approach 

• Development of dynamical models from data via system 
identification (a method that can be informed by behavior 
change theories).  

• Design of decision algorithms/decision “rules” through model-
based methodologies such as Model Predictive Control (MPC).  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The Just Walk Intervention Study 

Sponsor: NSF Smart and Connected Health (SCH) Program 

• Just Walk is an idiographic mHealth intervention to promote physical 
activity in sedentary adults based on control systems engineering. 

• Just Walk v1 relies on an experimental procedure using system 
identification to build a dynamical systems model that helps explain how 
step goals, rewards, and external factors influence walking. 

• Just Walk v1 is not a fully optimized intervention, but represents the first 
phase of a control optimization trial (COT), which is part of Just Walk v2. 

• N = 20 participants, 90% female, mean age = 47.25 ± 6.16 years,   
mean BMI = 33.79 ± 6.82 kg/m2. 
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 CSEL Just Walk Intervention 
Control Systems Engineering Laboratory 

The intervention seeks to promote physical activity (e.g., walking/running) among 
inactive adults by adjusting daily step goals and expected reward points, with the 
ultimate goal of reaching 10,000 steps per day (on average) per week. 
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Closing the Intervention Loop: Just Walk 

HMPC = Hybrid Model
Predictive Control 

C. A. Martín, D. E. Rivera and E. B. Hekler, “A decision framework for an adaptive behavioral intervention for physical activity using 
hybrid model predictive control,” 2016 American Control Conference (ACC), Boston, MA, 2016, pp. 3576-3581. 
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The Control Optimization Trial (COT) 

• A informative identification test provides the data needed to estimate 
a dynamical system model that can predict participant response to 
changes(in dosage and context). 

• Initiation and maintenance accomplished by a decision algorithm 
(“controller”) that relies on a dynamical model to decide the 
magnitude and timing of intervention components. 
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“Zippered” Multisine Inputs used in Just Walk v1 
Box, Hunter, and Hunter (Statistics for Experimenters), “to find out what happens when you 
change something it is necessary to change it.” 
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• Goal range: doable (baseline median) to ambitious (2.5x baseline median). 

• These are “pseudo-random”, statistically independent signals. 

• 16-day cycles implemented, five or six per participant, over approximately 12 weeks. 
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  Estimating Dynamical System Models 

• Black-box, “ready-made” prediction-error models (e.g., ARX),  

• Mechanistic, semi-physical models based on behavioral theories,  

– Theory of Planned Behavior  

– Social Cognitive Theory 
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ARX Model Estimation Procedure 

• Data Preprocessing: The data is preprocessed for missing entries. 

• Discrete-time parametric modeling: The filtered data is fitted to a multi-input AutoRegressive 
with eXternal input (ARX-[na nb nk]) parametric model: 

y(t) + ... + ana y(t � na) = b11u1(t � nk) + ... + bnb1u1(t � nk � nb + 1) 
.. .  

+ b1iui(t � nk) + ... + bnbiui(t � nk � nb + 1) 
..  . 

+ b1nu unu (t � nk) + ... + bnbnu unu (t � nk � nb + 1) + e(t) 

• Validation: Various measures used, among these the Normalized Root Mean Square Error 
(NRMSE) fit index: 

model fit (%) = 100 ⇥ 
✓ 
1 

||y(k) 
||y(k) 

ŷ(k)||2 

ȳ||2 

◆ 
(1) � �

�
y(k) is the measured output, ŷ(k) is the simulated output, ȳ  is the mean of all 
measured y(k) values, and || · ||2 indicates a vector 2-norm 
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Subset of Just Walk Signals (Participant 100230) 

Time series plot showing seven selected input sequences (manipulated inputs & measured 
disturbances), predicted behavior (from an ARX black-box model), actual behavior, model overall fit, 
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and estimation & validation cycles (1st, 2nd, and 5th for estimation; 3rd and 4th for validation).
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and estimation & validation cycles (1st, 2nd, and 5th for estimation; 3rd and 4th for validation).



Global V alidation Overview: Idiosyncrasy  
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Participant B 
Wkdy/Wknd Walker 
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Participant C
Goal-Driven 
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3-Input Model 
4-Input Model 
5-Input Model 
6-Input Model 
7-Input Model 

• Individualized ARX models from black-box system identification for three individuals: Goals, Expected Points, and 
Granted Points models; B: Predicted Busyness; S: Predicted Stress; T: Predicted Typical; W: Weekday-Weekend. 

• Participant A shows no model fit improvement beyond a 4-input model including predicted stress (S). 
• Participant B displays significant model fits only with the inclusion of the weekday-weekend input signal. 
• Participant C shows no model fit improvement beyond the 3-input model (with goals driving the behavior-change). 
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Gestational Weight Gain CSEL 
Control Systems Engineering Laboratory Adaptive Intervention Overview 

• Lead behavioral scientists are Danielle Downs (Kinesiology/Obstetrics 
and Gynecology) and Jen Savage (Nutritional Sciences), Penn State 
University (1R01HL119245-01); 

• Intervention components include dietary and physical activity (PA) 
education, individualized dietary and PA prescription, active learning, 
goal setting, and self monitoring (using records and PA monitors). 

• The goal is to show the feasibility of an adaptive, time-varying 
intervention relying on control systems engineering concepts. 

• Measures assessed daily, weekly, bi-weekly, or pre- and post-
assessment. 
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Overall Schematic Representation CSEL for the Adaptive GWG Intervention 
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Control Systems Engineering Laboratory 

TPB ≡ Theory of Planned Behavior 
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Fluid Analogy for the CSEL 
Control Systems Engineering Laboratory Theory of Planned Behavior 

Navarro-Barrientos, J.E., D.E. Rivera, and L.M. Collins, "A dynamical model for describing 
behavioural interventions for weight loss and body composition change," Mathematical 
and Computer Modelling of Dynamical Systems,Volume 17, No. 2, Pages 183-203, 2011. 
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Any path diagram can be expressed into a corresponding fluid analogy 
described by a system of differential equations! 
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 CSEL Dynamic Theory of Planned Behavior

First-Order Model Representation Control Systems Engineering Laboratory 

The conservation principle (Accumulation = Inflow � Outflow) leads to the
following system of di↵erential equations: 

d⌘2⌧2 = ⇠ (t  ✓ )  ⌘ (t) +  ⇣ (t)
dt

22 2 � 2 � 2 2

d⌘3⌧3 = ⇠ (t  ✓ )  ⌘ (t) +  ⇣ (t)
dt

33 3 � 3 � 3 3

d⌘4⌧4 = 41⌘1(t� ✓4) + 42⌘2(t� ✓5) + 43⌘3(t� ✓6)� ⌘4(t) +  ⇣4(t)
dt
d⌘5⌧5 = 54⌘4(t � ✓7) + 53⌘3(t � ✓8) � ⌘ (t) +  ⇣5 5(t),
dt

where: 
⌧1,  ,  ⌧5 are time constants,· · ·
⌘ ,  ,  ⌘    1 · · · 5 are the inventories,
⇠1(t) = b 1(t)e1(t), ⇠2(t) = n 1(t)m1(t), ⇠3(t) = c 1(t)p1(t), 
11,  , 33    · · · are the inflow resistances,
41, , 54  · · ·   are the outflow resistances,

✓1, · · ·  ,  ✓7     ⇣1, · · ·  ,  ⇣5  are time delays and are disturbances.
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EI-TPB = Energy Intake - Theory of Planned Behavior: 
PBC = Perceived Behavioral Control 
SN = Subjective Norm 
ATT = Attitude  

Energy Balance: 
FM: Fat Mass 
FFM: Fat-Free Mass 



HMZ TPB-PA Model Results (Phase 2 Participant) 
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Behavioral 
Control (η3)

Baseline

Intervention

(base)

Intervention 

Step-up

(up)

Gestational

Age
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Behavior 

(η5)

Intention 
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• PA: Physical Activity 
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 CSEL Social Cognitive Theory 
Control Systems Engineering Laboratory 

SCT describes a behavioral change model in which individuals proactively 
self-reflect, self-regulate, and self-organize (Bandura, 1989). 

Selected SCT components that are generated as a consequence of variation of 
external or internal stimuli (outputs) are: 

• Self-e�cacy (e.g. perceived confidence in one’s ability) 

• Behavioral outcomes (e.g. weight loss, physical pain) 

• Behavior (e.g. physical activity, days of abstinence, cigarettes per day). 

Selected variables that act as stimuli to promote (or relegate) behavior and other 
components (inputs) are: 

• Skills training 

• Observed behavior (vicarious learning) 

• Environmental context 
• Internal and external cues (e.g. triggers to behavior) 
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Fluid Analogy for CSEL 
Control Systems Engineering Laboratory Social Cognitive Theory 

Skills training, 
social persuasion 61(t) 
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• Riley, W.T., C.A. Martin, D.E. Rivera, E.B. Hekler, M.A.Adams, M.P. Buman, M. Pavel, and A.C. King “Development of a 
dynamic computational model of social cognitive theory,” Translational Behavioral Medicine 6 (4), 483-495, 2016. 

• Martin, C.A., D.E. Rivera, E.B. Hekler,W.T. Riley, M.P. Buman, M.A.Adams, and A. B. Magann, “A dynamical systems 
model of social cognitive theory,” Proceedings of the 2014 American Control Conference, Portland, Oregon, June 4-6, 
2014; also IEEETrans. Control Systems Technology, March 2020, https://ieeexplore.ieee.org/document/8532116. 
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Initial Conceptual Diagram CSEL 
Control Systems Engineering Laboratory (W.T. Riley, 8/1/11) 
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Refined Fluid Analogy CSEL 
Control Systems Engineering Laboratory (W.T. Riley, 10/29/12) 
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SCT Path Diagram CSEL 
Control Systems Engineering Laboratory (from fluid analogy, TBM paper) 
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Control Systems Engineering Laboratory
CSEL Operant Learning (OL) - Self-Efficacy (SE) 
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• Relying on inputs determined important from black-box (ARX) 
modeling, examine a reduced, parsimonious SCT structure.
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Control Systems Engineering Laboratory

Participant “A” 
(ARX 40% vs OL-SE 39% Fit Index) 



  

 

Controller Functional Requirements 

The decision algorithm/“controller” must: 

• consider multiple outcomes, 

• decide on multiple intervention dosages, 

• incorporate both feedback and feedforward decision-making, 

• incorporate constraint handling, 

• manage categorical (i.e., discrete-valued) dosages. 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Model Predictive Control (MPC)
Conceptual Representation 
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Take Tailoring Variables to Goal

CSEL 
Control Systems Engineering Laboratory 

 Penalize Changes in the Intervention Dosages 
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Closed-Loop Intervention 

Conceptual representation of the closed-loop adaptive intervention, based on the simplified 
version of the SCT model; shows a subset of the measured/designed Just Walk signals. 

C. A. Martín, D. E. Rivera and E. B. Hekler, A decision framework for an adaptive behavioral intervention 
for physical activity using hybrid model predictive control, 2016 American Control Conference (ACC), 
Boston, MA, 2016, pp. 3576-3581. 
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Closed-Loop Intervention(includes Maintenance) 
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• HMPC algorithm is reconfigured during “maintenance” phases. 
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The Control Optimization Trial (COT) 
Just Walk v2 

Hekler E.B., D.E. Rivera, C.A., Martin, S.S. Phatak, M.T. Freigoun, E. Korinek, P. Klasnja, M.A. Adams and   
M.P. Buman. “Tutorial for using control systems engineering to optimize adaptive mobile health 
interventions.” J Med Internet Res, 20(6):e214, (2018) DOI: 10.2196/jmir.8622. 
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Adaptive GWG Intervention: 
Decision Rule Illustration CSEL 

Control Systems Engineering Laboratory 

• Time-varying, adaptive intervention via decision rules involving: 

- augmentation/reduction of components following a certain dosage sequence; 

- at each decision point, only one component can be adjusted. 
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Step up 5 3rd augmentation of PA component 
* HE component: Healthy Eating Active Learning 
# PA component: Physical Activity Active Learning 

Dong, Y., D. E. Rivera, D. S. Downs, J. S. Savage, D. M. Thomas, and L. M. Collins “Hybrid 
model predictive control for optimizing gestational weight gain behavioral interventions” 
Proceedings of the 2013 American Control Conference, Washington, DC, pages:1973-1978. 
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HMZ Hybrid MPC Simulation 
(using participant-validated model) 
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• MPC algorithm anticipates the need for dosage augmentations, because of its improved 
understanding of participant response as a result of the dynamical system model. 
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HMZ Control Optimization Trial Simulation 
(using participant-validated model) 
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• In the open-loop portion of the COT, augmentations in HE and PA active learning provide 
data from which a dynamical system model is obtained. 
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  COT Future Plans 

• The COT will be evaluated experimentally in Just Walk v2, which is 
being developed in fulfillment of the aims of R01CA244777. 

• Clinical trial with N = 386 is planned; a myriad of activities 
(involving tech development, measurement, model development, 
clinical trails, recruitment and meaningful consent) are involved.  

• An iterative, intelligent triangulation process is needed to achieve 
success. 
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      How does this relate to machine learning? 

• Machine learning is a very broad field, associated with many tasks 
beyond decision rules (e.g., classification, detection, etc.) 

• Reinforcement learning is probably the closest parallel to control 
systems engineering; no “hostilities” exist between fields, just 
different perspectives and points of view. 

• Benefits afforded in control systems engineering through: 

• use of behavioral theory to help define model structure. 

• experimental design (using multisines or step changes) to improve 
model accuracy and reliability. 

• controller robustness (through tuning) means that models need not 
be perfect to meet requirements. 
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   Summary and Concluding Thoughts 

• mHealth behavioral interventions represent an interesting (though 
challenging) class of control engineering applications, with  
significant impact on public health.  

• Control systems engineering informs the design of decision “rules” 
and model development for optimized adaptive interventions.  

• Behavioral theories allow “physics” to be part of the problem.  Their 
use is a distinctive aspect of the control engineering approach.  

• Aspirational goal is to establish the control optimization trial (COT) 
as a reliable means to build “perpetually adaptive” closed-loop 
mHealth interventions; this is the basis for Just Walk v2. 
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