Methods: Mind the Gap Webinar Series

Epidemiologic and Patient-Oriented Research Methods for Rheumatoid Arthritis Etiology and Outcomes

Presented by:

Jeffrey A. Sparks, MD, MMSc Brigham and Women's Hospital Harvard Medical School

Disclosures/Funding

No personal financial disclosures

Funding

- NIAMS K23 AR069688 (Sparks)
- NIAMS R03 AR075886 (Sparks)
- NIAMS L30 AR066953 (Sparks)
- RRF K Supplement Award (Sparks)
- Brigham Research Institute Microgrant (Sparks)
- Joint Biology Consortium Microgrant (Sparks)
- NIAMS P30 AR070253 (JBC, Nigrovic) •
- NIAMS P30 AR072577 (VERITY, Solomon)
- Autoimmune Centers of Excellence (StopRA, Deane/Holers)

BRIGHAM HEALTH

BRIGHAM Research Institute JOINT BIOLOGY CONSORTIUM

Rheumatology Research Foundation

Advancing Treatment Finding Cures

Outline

- 1. Clinical background and development of rheumatoid arthritis (RA)
- 2. Prospective cohort studies for incident RA risk
- 3. Nested case-control studies for biomarkers and incident RA risk
- 4. Matched cohort studies for outcomes after RA diagnosis
- 5. Prospective RA registry studies for RA-associated interstitial lung disease (RA-ILD)
- 6. RA prevention randomized controlled trial design

Clinical background and development of RA

Background: Rheumatoid arthritis (RA)

- Chronic inflammatory autoimmune disease: painful, swollen joints
- Affects nearly 1% of adults (2.3 million in the US)
- 75% of patients with RA are women
- Median age at diagnosis: 55 years
- Long-term consequences: joint destruction, chronic pain, disability
- Autoantibodies: rheumatoid factor (RF), anti-citrullinated protein antibodies (ACPA)
 - Seropositive RA: RF+ or ACPA+
 - 65% of patients
 - More severe clinical course
 - Seronegative RA: RF- and ACPA-

Sparks JA, Ann Intern Med, 2019

Background: RA and lung disease

- **RA-ILD**: Rheumatoid arthritis-associated interstitial lung disease
- Characterized by pulmonary inflammation and/or fibrosis
- Severe RA-ILD affects 2-10% of RA patients
 - Subclinical or mild RA-ILD in 25% of RA patients
- RA-ILD risk factors: male sex, older age, seropositivity
 - Can occur prior to articular involvement
- Bronchiectasis: damaged bronchi/airways
 - Shortness of breath and cough
 - Increases risk for pneumonia
 - Rare manifestation of longstanding, severe seropositive RA

Background: Model of seropositive RA pathogenesis

Cigarette smoking (and other environmental factors)

Prospective cohort studies for incident RA risk

Nurses' Health Study (n=121,700; 30-55 years in 1976)

Nurses' Health Study II (n=116,430; 25-42 years in 1989)

Identification of incident RA in the NHS and NHSII

Aletaha D, *et al*, *Arthritis Rheum*, 2010 Arnett FC, *et al*, *Arthritis Rheum*, 1988 Karlson EW, *et al*, *Ann Epidemiol*, 1995

Prospective cohort study design in the NHS for incident RA risk

Time in Nurses' Health Study

Follow-up and RA cases

- Total <u>n=230,732</u> women in the NHS/NHSII
- 1,528 incident RA cases during 6,037,151 person-years
 - Mean follow-up: 26.2 years/subject
 - 969 seropositive RA cases (63%)
 - 559 seronegative RA cases (37%)

Smoking status and RA risk

-	Never	Past	Current	
RA Туре	RA Type HR (95%CI)		HR (95%CI)	
Seropositive RA				
Cases/person-yrs	415/3,254,327		169/832,888	
Multivariable*	1.00 (Ref)	1.48 (1.28,1.71)	1.65 (1.36,1.99)	
Seronegative RA				
Cases/person-yrs	260/3,254,901	211/1,932,090	88/832,099	
Multivariable*	1.00 (Ref)	1.18 (0.98,1.43)	1.20 (0.93,1.55)	

*Adjusted for age, calendar year, cohort, household income, body mass index, physical activity, alcohol intake, oral contraceptive use, parity/breastfeeding, and menopausal status/postmenopausal hormone use

Years since smoking cessation and seropositive RA risk

*Adjusted for age, questionnaire period, cohort, household income, body mass index, physical activity, alcohol intake, oral contraceptive use, parity/breastfeeding, and menopausal status/postmenopausal hormone use

Liu X, ..., Sparks JA, Arthritis Care Res, 2019

14

Years since smoking cessation and seronegative RA risk

*Adjusted for age, questionnaire period, cohort, household income, body mass index, physical activity, alcohol intake, oral contraceptive use, parity/breastfeeding, and menopausal status/postmenopausal hormone use

15

Liu X, ..., Sparks JA, Arthritis Care Res, 2019

COPD and risk for incident RA in NHS/NHSII <u>Primary analysis: Entire study sample</u>

	No COPD or asthma	COPD
RA Type	HR (95%CI)	HR (95%CI)
All RA		
Cases/person-years	1,029/4,337,186	31/47,285
Multivariable*	1.00 (Ref)	1.80 (1.24,2.62)
Seropositive RA		
Cases/person-years	642/4,328,257	21/47,134
Multivariable*	1.00 (Ref)	1.97 (1.25,3.11)
Seronegative RA		
Cases/person-years	387/4,327,740	10/47,121
Multivariable*	1.00 (Ref)	1.52 (0.79,2.91)

*Adjusted for age, questionnaire period, cohort, US geographic region, median household income, **smoking pack-years (continuous and quadratic), smoking status**, sedentary activity, parity/breastfeeding, menopausal status/postmenopausal hormone, dietary quality, body mass index, **passive smoking**

COPD and risk for incident RA in NHS/NHSII

Health Study Secondary analysis: Restricted to smokers aged >55 years

	No COPD or asthma	COPD
RA Type	HR (95%CI)	HR (95%CI)
All RA		
Cases/person-years	295/928,014	21/29,365
Multivariable*	1.00 (Ref)	2.20 (1.38,3.51)
Seropositive RA		
Cases/person-years	176/926,338	15/29,271
Multivariable*	1.00 (Ref)	2.85 (1.63,4.99)
Seronegative RA		
Cases/person-years	119/926,271	6/29,279
Multivariable*	1.00 (Ref)	1.40 (0.59,3.29)

*Adjusted for age, questionnaire period, cohort, US geographic region, median household income, **smoking** pack-years (continuous and quadratic), smoking status, sedentary activity, parity/breastfeeding, menopausal status/postmenopausal hormone, dietary quality, body mass index, passive smoking

Nurses'

Nested case-control studies for biomarkers and incident RA risk

<u>Nested case-control</u> study design in the NHS for biomarkers and incident RA risk

Pre-diagnosis CCP/ACPA in RA cases/controls in the NHS

Asthma and RA risk by pre-RA ACPA status

	Multivariable**
Pre-RA ACPA Status	OR (95%CI)
Pre-RA ACPA+ RA	
n=96 outcomes from total n=382	
No asthma	1.00 (Ref)
Asthma	3.57 (1.58,8.04)
Pre-RA ACPA- RA	
n=188 outcomes from total n=751	
No asthma	1.00 (Ref)
Asthma	0.86 (0.46,1.60)

*Matching factors: age at index date, time from blood draw to index date, cohort, menopausal status, and postmenopausal hormone use

**Additionally adjusted for smoking pack-years, parental passive smoking, ever lived with smoker, and body mass index

Matched cohort studies for outcomes before/after RA diagnosis

<u>Matched cohort</u> study nested in the NHS for pre-RA biomarkers and outcomes

Exposure variables:

- All pre-RA vs. matched controls
- Pre-RA ACPA+ vs. matched controls
- Pre-RA ACPA- vs. matched controls

Nurses' Health Study Results: Pre-RA ACPA status and risk for incident COPD

Pre-RA ACPA Status	COPD cases/ person-years	Multivariable* HR (95%Cl)
Pre-RAACPA+ (n=59)	13/1,030	3.04 (1.33,7.00)
Matched controls (n=176)	14/3,375	1.00 (Ref)
Pre-RA ACPA- (n=224)	23/4,117	1.07 (0.65,1.75)
Matched controls (n=666)	57/12,967	1.00 (Ref)

*Adjusted for matching factors (age, time to blood draw, cohort, menopause/hormone use), smoking pack-years, body mass index, and median household income

NHS: Matched prospective cohort study design for outcomes after RA diagnosis

<u>Comparator cohort (n=10,070)</u>: Each RA case matched to 10 non-RA comparators by age/year at index date

RA vs. comparators: Incident COPD risk

	COPD
RA Type	HR (95%CI)
All RA	
Age-adjusted	1.52 (1.17,1.97)
Smoking-adjusted	1.43 (1.09,1.87)
Multivariable adjusted	1.68 (1.36,2.07)
Seropositive RA	
Age-adjusted	1.60 (1.17,2.19)
Smoking-adjusted	1.44 (1.04,2.00)
Multivariable adjusted	1.74 (1.36,2.23)
Seronegative RA	
Age-adjusted	1.41 (0.89,2.23)
Smoking-adjusted	1.47 (0.91,2.39)
Multivariable adjusted	1.42 (0.91,2.40)

Nurses' Health Study RA vs. comparators: Respiratory mortality risk

RA Type	HR (95%CI)
All RA	
1: Baseline confounders model	2.57 (1.91,3.45)
2: Model 1 + Time-updated lifestyle mediators	2.23 (1.63,3.05)
3: Model 2 + Multimorbidity mediators	1.89 (1.39,2.57)
Seropositive RA	
1: Baseline confounders model	3.65 (2.59,5.14)
2: Model 1 + Time-updated lifestyle mediators	3.40 (2.38,4.86)
3: Model 2 + Multimorbidity mediators	2.91 (2.04,4.17)
Seronegative RA	
1: Baseline confounders model	1.11 (0.59,2.08)
2: Model 1 + Time-updated lifestyle mediators	0.88 (0.44,1.76)
3: Model 2 + Multimorbidity mediators	0.80 (0.41,1.54)

Yoshida K, ... , Sparks JA, Arthritis Care Res, 2020

Prospective RA registry studies

Prospective RA recruitment: BRASS (n = 1,600)

Up to 15 years of follow-up / recruitment ongoing

RA-ILD in BRASS

- Research review of images of clinically-indicated CT chest scans
 - 1 attending pulmonologist
 - 2 attending chest radiologists
- Each CT chest scan classified as:

- Outcome definition: early/clinically-significant RA-ILD (n=86)
 - Date of outcome: first CT chest scan performed satisfying criteria

Study design: Prospective cohort Primary analysis: Time-updated with censoring

DAS28 and RA-ILD risk

RA-ILD risk	Remission/Low HR (95%CI)	Moderate/High HR (95%CI)
Cases/person-years	26/5,459	35/2,509
Multivariable*	1.00 (Ref)	2.22 (1.28,3.82)

*Adjusted for age, sex, smoking, RA duration, serostatus

4-level ordinal DAS28 and RA-ILD risk

RA-ILD Risk	Remission HR (95%CI)	Low HR (95%CI)	Moderate HR (95%CI)	High HR (95%Cl)	<i>p</i> for trend
Cases/person-years	18/4,232	8/1,227	20/1,828	15/681	
Multivariable*	1.00 (Ref)	1.41 (0.61,3.28)	2.08 (1.06,4.05)	3.48 (1.64,7.38)	0.001

RA-ILD Risk	HR (95%CI) per unit increase in DAS28		
Cases/person-years	61/7,968		
Multivariable*	1.35 (1.14,1.60)		

*Adjusted for age, sex, smoking, RA duration, serostatus

Cohort analyses in BRASS (n = 1,600)

BRASS-ILD interim findings (n=106)

- Undiagnosed parenchymal lung disease: 44%
 - Associations: older age, white race, cough, lower D_{LCO}, diffusion defect, more dyspnea, higher RF titer, higher ACPA titer
- Emphysema: 37%
- Bronchiectasis: 28%
- Subclinical RA-ILD: 16%

E. Emphysema

F. Bronchiectasis

G. Cystic Lung Disease H. Pulmonary Nodule

RA prevention randomized controlled trial design

RA-free survival according to ACPA level

Ford JA, et al, Arthritis Care Res, 2019

StopRA: Strategy to Prevent Rheumatoid Arthritis

Clinical trial for RA prevention funded by the Autoimmune Centers of Excellence (NIAID)

Eligibility: ACPA+ >2x ULN No RA or related diseases No DMARD use

StopRA mechanistic studies

- Change in levels of RF, ACPA, and inflammatory markers
- Immunophenotyping of peripheral blood mononuclear cells

StopRA clinical/epidemiologic studies

- Lung course/symptoms
- Surveys
 - Lifestyle factors
 - Diet
 - Medications
 - Medical history
 - Family history
 - Symptoms
- Pain trajectory
- Transition to/after RA studies

Summary

- Illustrated different study designs to investigate respiratory burden of seropositive RA
- Prospective cohort studies
 - Associations of smoking and COPD with incident seropositive RA risk
- Biomarker studies in pre-RA
 - ACPA elevation 2-10 years prior to RA diagnosis
 - Pre-RAACPA elevation strongly associated with asthma/COPD
- Excess COPD and respiratory mortality for seropositive RA not explained by smoking
- RA disease features and risk for respiratory outcomes
 - Increased articular disease activity and RA-ILD risk
- Recruitment ongoing for first RA prevention trial in the US

@jeffsparks jsparks@bwh.harvard.edu

Brigham and Women's Hospita Rheumatoid Arthritis Sequential Study

NHS

- Elizabeth Karlson
- Karen Costenbader
- Bing Lu ٠
- Julia Ford
- Kazuki Yoshida
- Alessandra Zaccardelli
- Susan Malspeis
- Jing Cui
- Jiaqi Wang
- Lauren Prisco
- Lily Martin

BRASS

- Nancy Shadick
- Michael Weinblatt
- Christine lannaccone
- Aliza Liebman
- Sicong Huang
- Weixing Huang
- Vivi Feathers
- Gabriela Maica
- Adel Andemeskel
- Joshua Colls

BRASS-ILD

- Tracy Doyle
- Wesley Xiong
- Lauren Prisco •
- Lily Martin ۲
- Allison Marshall
- Alessandra Zaccardelli
- Maura Friedlander
- Elizabeth Karlson ٠
- Ivan Rosas

JOINT BIOLOGY CONSORTIUM

- Paul Dellaripa
- Anthony Esposito

National Institutes of Health

