Methods: Mind the Gap
Webinar Series

Using Control Systems Engineering to Optimize Adaptive Mobile Health Interventions

Presented by

Eric Hekler, Ph.D.
University of California, San Diego
Using Control Systems Engineering to Optimize Adaptive Mobile Health Interventions

Eric B. Hekler, PhD
Associate Professor, Department of Family Medicine & Public Health
Director, Center for Wireless Health & Population Health Systems
Design Lab Faculty Member
Qualcomm Institute/CalIT2
University of California, San Diego
ehekler@ucsd.edu

Daniel E. Rivera, PhD
Professor, School for Engineering of Matter, Transport, and Energy (SEMTE)
Director, Control Systems Engineering Laboratory
Ira A. Fulton Schools of Engineering
Arizona State University
Daniel.rivera@asu.edu

@ehekler
Just Walk “modeling and more” team
Everything changes and nothing stands still.
(‘Change is the only constant.’)
-Heraclitus
Take-home points

• If reducing lapses/relapses or promoting maintenance/abstinence is your goal, then a control optimization trial (COT) might help you.

• It’s not easy, but it’s easier than you think.

Collins & Krueger (2018) *Optimization of behavioral, biobehavioral, and biomedical interventions*
What can be optimized?

• Intervention package
 – Factorial/fractional factorial trial (FT)
• Infrequent, key decision rules (e.g., clinical practice)
 – Sequential Multiple Assignment Randomized Trial (SMART)
• Bout-specific decision rules (i.e., just-in-time adaptive interventions; JITAIbs)
 – Micro-randomization Trials (MRTs)
• Gradual, non-linear, idiosyncratic change
 – Control Optimization Trial (COT)
Gradual, non-linear, idiosyncratic change

- **Initiation**: The initial phase characterized by fluctuating trends.
- **Maintenance**: The phase where the steps per day stabilize and maintain a consistent level.

Graph Details
- **Y-axis**: Steps per day.
- **X-axis**: Days.
- **Lines**:
 - **Actual steps**: Black line showing the actual steps taken over time.
 - **Intervention objective**: Magenta line indicating the intervention objective.

The graph illustrates the gradual and non-linear nature of the change, with distinct phases identified as Initiation and Maintenance.
How to optimize?

• Review of evidence from optimization trials from prior participants
 – FT, SMART, MRT, & COT

• “Real-time” optimization algorithm for current individual
 – MRT+ Reinforcement Learning (RL)
 – COT
 • Individualized & perpetually adapting
Need for **individualized** and **perpetually adapting** interventions

People are different.
Need for individualized and perpetually adapting interventions

Reasons people offered via EMA on why they did not meet a daily step goal

People are different. Context matters.

Slide adapted from @phataksayali
Everything changes and nothing stands still.
(Paraphrased into ‘change is the only constant.’)
-Heraclitus

People are different.
Context matters.
Things change.
Why use a real-time optimization algorithm?

- Inherent complexity of a problem
- Examples of complex problems
 - From non-active to maintaining physical activity guidelines
 - From obese to maintaining a normal weight
 - From smoking to maintaining abstinence
 - From depressed to maintaining good mental health

Diagram:
- Dynamic (things change)
- Manifest idiosyncratically (people are different)
- Multivariate (context matters)
Control Systems Engineering

NSF IIS-1449751: EAGER: Defining a Dynamical Behavioral Model to Support a Just in Time Adaptive Intervention, PIs, Hekler & Rivera
Hekler et al, JMIR 2018

@ehekler
How a controller works

American Control Conference (ACC)
Normal intervention development steps

• Lit review - organize your understanding of prior work
• Define a hypothesis
• Test your hypothesis in naturalistic setting
 – e.g., observational trial/EMA trial
• Design your intervention
• Test your intervention
Step 1. Derive a dynamical model (organize prior work)

- Select/specify a general theoretical model
- Translate that into a dynamical model
- Vet dynamical model via simulation studies, secondary data analyses, or both.
Step 1: Derive a dynamical model

@ehekler

It’s easier than you think...

• Many models have now been specified
 – SCT, TPB, etc
• Drawing on a whiteboard gets you pretty far
• You can find a control systems engineer partner
 – It’s a huge field! They are at your university.
 – Use our papers as a bridge
Step 1 (optional): test via simulation

Low Self-Efficacy

High Self-Efficacy

Step 1 (optional): test via secondary analyses

@ehekler
Normal intervention development steps

• Lit review - organize your understanding of prior work
• **Define a hypothesis**
• Test your hypothesis in naturalistic setting
 – e.g., observational trial/EMA trial
• Design your intervention
• Test your intervention
The intervention seeks to promote physical activity (e.g., steps/day) among inactive adults by adjusting daily step goals and expected reward points, with the ultimate goal of reaching 10,000 steps per day (on average) per week.
Step 2: Define intervention options and outcomes:
Daily “ambitious but doable” step goals

@ehekler

Hekler (PI), Rivera (Co-PI), NSF IIS-1449751
Normal intervention development steps

- Lit review - organize your understanding of prior work
- Define a hypothesis
- **Test your hypothesis in naturalistic setting**
 - e.g., observational trial/EMA trial
- Design your intervention
- Test your intervention
“...to find out what happens when you change something it is necessary to change it.”

-Box, Hunter, and Hunter (Statistics for Experimenters)
Step 3: Conduct a system ID experiment (test in natural setting)

• Design open loop system ID study and analytic plan
• Conduct data analyses
System identification (ID)

- System ID focuses on modeling of dynamical systems (such as humans) from data, ideally from experimentation, not merely observation.

- It is focused on estimating/validating a model to describe the system (e.g., a human).

- It is **NOT** focused on effect size estimates of intervention components.
One key COT sub-experiment

- Open loop system ID

Tests understanding of the “system”

a) theory-testing
b) individualized tailoring variable selection

@ehekler

Figure 9 Time-series plot of a fitted 4-input model that was selected one of the participants. @ehekler
Step 3 (cont). Study: “Just Walk”

@ehekler

Hekler et al. *JMIIR, 2018*
Step 3 (cont) Participants

- BMI 33.7 ± 6.7
- 22 inactive, overweight Android users
- Age = 47 ± 6.2 years
- 87% women
- Living anywhere in the US
- Average Baseline Median Steps: 4972 steps/day (SE = 482)

Step 3 (cont): Feasibility results

+2,650 (t=8.25, p<0.01) Average step increase from baseline to intervention

69% (SD = 24) Average goals met

>90% Adherence to EMA

100% enjoyed variable goals

85% found app easy to use

88% interested in continuing to use

Korinek et al. JoBM, 2018
Step 3 (cont). Data analysis

- **Data prep**: The data is preprocessed for missing data entries.

- **Define your model**: The filtered data is fitted to a multi-input AutoRegressive with eXternal input (ARX-[na nb nk]) parametric model:

\[
y(t) + \ldots + a_{n_a} y(t - n_a) = b_{11} u_1(t - n_k) + \ldots + b_{n_b} u_1(t - n_k - n_b + 1) \\
\quad \vdots \\
+ b_{1i} u_i(t - n_k) + \ldots + b_{n_i} u_i(t - n_k - n_b + 1) \\
\quad \vdots \\
+ b_{1n_u} u_{n_u}(t - n_k) + \ldots + b_{n_n} u_{n_u}(t - n_k - n_b + 1) + e(t)
\]

- **Validate your model**: Various measures used, among these the Normalized Root Mean Square Error (NRMSE) fit index:

\[
\text{model fit (\%)} = 100 \times \left(1 - \frac{||y(k) - \hat{y}(k)||_2}{||y(k) - \bar{y}||_2}\right)
\]

where $y(k)$ is the measured output, $\hat{y}(k)$ is the simulated output, \bar{y} is the mean of all measured $y(k)$ values, and $||\cdot||_2$ indicates a vector 2-norm ($||x||_2 \overset{\text{def}}{=} \sqrt{x^T x}$).
Figure 9 Time-series plot of a fitted 4-input model that was selected one of the participants.

@ehekler Phatak et al. JBI, 2018
What does this get us?

• A model to simulate future responses for each individual.

• This simulation enables dynamic, idiosyncratic, self-correcting decisions for each person.
Individualized tailoring variables!

Table 6 Final Selected Models and Input Combinations

<table>
<thead>
<tr>
<th>Model/Input Combination</th>
<th>Number of cases for each variable (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weekend(^b)</td>
<td>1</td>
</tr>
<tr>
<td>Typical & Weekend(^b)</td>
<td>1</td>
</tr>
<tr>
<td>Busy(^b)</td>
<td>2</td>
</tr>
<tr>
<td>Base Model(^a)</td>
<td>1</td>
</tr>
<tr>
<td>Stress(^b)</td>
<td>1</td>
</tr>
<tr>
<td>Typical(^b)</td>
<td>1</td>
</tr>
<tr>
<td>Busy & Weekend(^b)</td>
<td>1</td>
</tr>
<tr>
<td>Stress & Typical(^b)</td>
<td>1</td>
</tr>
<tr>
<td>Busy & Stress</td>
<td>1</td>
</tr>
<tr>
<td>Stress & Typical</td>
<td>1</td>
</tr>
<tr>
<td>Stress & Typical & Weekend(^b)</td>
<td>1</td>
</tr>
<tr>
<td>Typical & Weekend(^b)</td>
<td>1</td>
</tr>
</tbody>
</table>

\(^a\) base model that includes goals, expected points and granted points
\(^b\) base model + specified inputs.

Assuming individualized tailoring variables are better, prior evidence tailoring variables would have been inappropriate for 75% of our sample.
It’s easier than you think...

- There’s likely a control theory person at your school

- Standard toolkits in MatLab
 - Translatable to R
Normal intervention development steps

• Lit review - organize your understanding of prior work
• Define a hypothesis
• Test your hypothesis in naturalistic setting
 – e.g., observational trial/EMA trial
• Design your intervention
• Test your intervention
Step 4: Define optimization criteria & controller (design your intervention)

- **Physical activity**
 - Initiation “Set-point”
 - 10,000 steps/day, on average per week
 - +3,000 steps/day, on average per week relative to baseline
 - Transitions (both positive & lapses/relapses):
 - achieving 10,000 steps/day set point for 3 consecutive weeks OR
 - AFTER at least 6 months, +3,000 steps/day set point for 3 weeks.
 - Maintenance
 - Continue to meet PA targets
 - Reduce total interactions, ideally, to 0, except self-tracking
Closing the intervention loop

Step 4. Design the controller

Prior steps Report (Measured Outcome)

Prior Environmental Context Report (Measured Disturbance)

Forecasted Environmental Context Report $d_7(k+i)$ (if available)

Future Step Goals $u_8(k+i)$

Manipulated Variable

Controlled Variable

Disturb. Variable

Desired steps (Setpoint $y_{4r}(k+i)$)

Predicted steps $y_4(k+i)$

Past Future

Prior Step Goals u_8^{max} u_8^{min}

Move Horizon

Time (days)

k $k+1$ $k+m$ $k+p$
Step 4 (optional): Examine robustness via simulation

![Graph showing daily steps (y4) over time with different parameter mismatches.]

![Graph showing prediction error (PE) over time with different parameter mismatches.]

Martin, Rivera, & Hekler (2016)
Normal intervention development steps

- Lit review - organize your understanding of prior work
- Define a hypothesis
- Test your hypothesis in naturalistic setting
 - e.g., observational trial/EMA trial
- Design your intervention
- Test your intervention
Step 5: Conduct a Control Optimization Trial (COT) (test your intervention)

- Clearly specified adaptive intervention (already discussed)
- Design of sub-experiments and data analysis plan
- Conduct the trial and the analyses
COT sub-experiment options

- **Open loop system ID**
 - Tests understanding of the “system”
 - a) theory-testing
 - b) individualized tailoring variable selection

 ![Diagram of open loop system ID](https://www.mathworks.com/videos/understanding-control-systems-part-1-open-loop-control-systems-123419.html)

- **Closed loop controller optimization**
 - Tests understanding of the feedback/decision rule
 - a) real-time algorithm optimization

 ![Diagram of closed loop controller optimization](https://www.mathworks.com/videos/understanding-control-systems-part-2-feedback-control-systems-123501.html)
Proposed COT example

Open-loop System ID

Closed loop optimization (initiation)

Closed loop optimization (maintenance)
What does this get us?

• Immediate benefits to individual
 – Individualized models
 • Enables simulations of future responses for each person
 – Individualized tailoring variables
 • Enables matching the intervention to each person
 – Real-time optimization algorithm
 • Enables perpetual adaptation to changing people and contexts

• Secondary optimization benefits
 – Rigorous data about each adaptive intervention element
 • Enables data-driven optimization of elements (e.g., tailoring variables, algorithms)
 – Effect size estimates of intervention components via stats
 • Enables estimation of generalized effect of intervention components
 – Rich experimental data
 • Enables dynamic theory testing in alignment with Riley, Rivera, et al’s call (Riley et al 2011)
MOST & Control Systems Engineering

• MOST
 • Preparation
 – Create a conceptual framework
 – Select intervention components/options
 – Conduct a feasibility study
 – Define optimization criteria
 • Optimization
 – Run an optimization trial (e.g., FT, SMART, or MRT)
 • Evaluation
 – RCT of “optimized” intervention package compared to meaningful comparator

• Control Engineering
 • Step 1: Derive a dynamical model
 • Step 2: Define intervention options and outcomes
 • Step 3: Conduct a System Identification Experiment
 • Step 4: Design the Controller, Including Optimization Criteria
 • Step 5: Conduct a Control Optimization Trial (COT)
 • Evaluation
 – RCT comparing COT intervention to meaningful comparator

Rivera, Hekler et al. 2018; Hekler, Rivera, et al. JMIR 2018
Limitations

• COT approach has not been evaluated in an RCT
 – Prior work justifies advancing this approach
 – “Back to the future” as Carver, Sheier and others wanted to use these methods but technology was not ready
 – It now is
Testing a COT intervention in an RCT

Randomization Design

Outcome Measures

Acti-Graph
1) Steps/day
2) MVPA, min/week

In-person
1) BMI
2) Blood pressure
3) Heart rate
4) Heart rate variability

Just Walk Charge 3 Apps
1) Engage with apps

Fitbit
1) Steps/day
3) Resting heart rate

Measurement only (not to scale)

COT-based Intervention

Non-COT-based Intervention

Timeline
Baseline 6 12 18
Limitations

• COT approach has not been evaluated in an RCT
 – Prior work justifies advancing this approach
 – “Back to the future” as Carver and Sheier and others wanted to use these methods but technology not ready
 – It now is

• Just like stats, you need a control systems engineer

• Approach opens up ethical issues
Repertoire of optimization trials

• Intervention package
 – Factorial/fractional factorial trial (FT)

• Infrequent, key decision rules (e.g., clinical practice)
 – Sequential Multiple Assignment Randomized Trial (SMART)

• Bout-specific decision rules (i.e., just-in-time adaptive interventions; JITAIls)
 – Micro-randomization Trials (MRTs)

• Gradual, non-linear, idiosyncratic change
 – Control Optimization Trial (COT)
Take-home points

• If reducing lapses/relapses or promoting maintenance/abstinence is your goal, then a control optimization trial (COT) might help you.

• It’s not easy, but it’s easier than you think.
Helpful references

UC San Diego

Control Systems Engineering Laboratory