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Fverything changes and nothing stands still.
(‘Change is the only constant.”)
-Heraclitus



Take-home points

* If reducing lapses/relapses or promoting maintenance/abstinence is
your goal, then a control optimization trial (COT) might help you.

* [t's not easy, but it's easier than you think.
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MULTIPHASE OPTIMIZATION STRATEGY (MOST)
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OPTIMIZATION

EXPECT
OPTIMIZED INTERVENTION
TO BE EFFECTIVE?

EVALUATION

OPTIMIZED
INTERVENT ION

Linda M. Collins
The Methodology Center o
Penn State

Collins & Krueger (2018) Optimization of behavioral,
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What can be optimized?

Intervention package

— Factorial/fractional factorial trial (FT)

* Infrequent, key decision rules (e.g., clinical practice)
— Sequential Multiple Assignment Randomized Trial (SMART)

* Bout-specific decision rules (i.e., just-in-time adaptive
interventions; JITAIs)
— Micro-randomization Trials (MRTs)

* Gradual, non-linear, idiosyncratic change

— Control Optimization Trial (COT)



Gradual, non-linear, idiosyncratic change
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How to optimize?

* Review of evidence from optimization trials from prior
participants
— FT, SMART, MRT, & COT

* “Real-time” optimization algorithm for current individual

— MRT+ Reinforcement Learning (RL)

— COT
* Individualized & perpetually adapting



Need for individualized and perpetually adapting interventions
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Need for individualized and perpetually adapting interventions

Reasons people offered via EMA on why they did not meet a daily step goal
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Fverything changes and nothing stands still.
(Paraphrased into ‘change is the only constant.”)
-Heraclitus

People are different. Context matters. Things change.



Why use a real-time optimization algorithm?

Inherent complexity of a problem

Dynamic
(things change)
Manifest Multivariate
idiosyncratically (context
(people are matters)

different)

Examples of complex problems

From non-active to maintaining
physical activity guidelines

From obese to maintaining a
normal weight

From smoking to maintaining
abstinence

From depressed to maintaining
good mental health



Control Systems Engineering

NSF 1S-1449751: EAGER: Defining a Dynamical Behavioral
Model to Support a Justin Time Adaptive Intervention, Pls, Hekler & Rivera
Hekler et al, JMIR 2018

@ehekler
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How a controller works
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Normal intervention development steps

* Litreview - organize your understanding of prior work
* Define a hypothesis

* Test your hypothesisin naturalistic setting
— e.g., observational trial EMA trial

* Design yourintervention
* Testyourintervention



Step 1. Derive a dynamical model (organize prior work)

* Select/specify a general theoretical model|
* Translate thatinto a dynamical model|

* Vetdynamical modelvia simulation studies, secondary data
analyses, or both.

@ehekler



Step 1: Derive a dynamical model
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Martin, Hekler, Rivera, et al. (2018); Riley, Martin, Rivera, Hekler, et al. 2016; Martin, Riley, Rivera, Hekler, et al. 2014



t's easier than you think...

* Many models have now
been specified
— SCT, TPB, etc

* Drawing on a whiteboard
gets you pretty far

* You can find a control
systems engineer partner

— It'sa huge field! They are at
your university.

— Use our papers as a bridge




Step 1 (optional): test via simulation
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Step 1 (option

al): test via secondary analyses

Number of reminders sent to set a new goal

Reading tips in mtrack ( Skills training (§1) ) ( External Cue (E_,B) )
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Normal intervention development steps

* Litreview - organize your understanding of prior work

 Define a hypothesis

* Testyour hypothesisin naturalistic setting
— e.g., observational trial EMA trial

* Designyourintervention

* Testyourintervention

24



Step 2: Define intervention options and outcomes
(Define a hypothesis)

The intervention seeks to promote physical activity (e.g., steps/day) among
inactive adults by adjusting daily step goals and expected reward points,

with the ultimate goal of reaching 10,000 steps per day (on average) per week.
Behavioral Outcomes

(examples):
Self-Efficacy
Goals  Us J Outcome Expectancies
8 Behavioral
INTERVENTION Expected u I's outcomes
oints U9 . ﬁ
s s Social
Cognitive
] Granted
Desired . Theo
u .
daily steps If/ Then M’ 10 ry Behavior
Model Y4 (steps)
Environmental 74
Environmental context context
| || 7
(examples): .l
Busyness,
Stress,
Weather,

Weekday or weekend

@ehekler Martin, Rivera, & Hekler, 2015; 2016, American Control Conference =



Step 2: Define intervention options and outcomes:
Daily "ambitious but doable” step goals

» 14000
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o
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o
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@ehekler
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Normal intervention development steps

* Litreview - organize your understanding of prior work
* Define a hypothesis

 Testyour hypothesis in naturalistic setting
— e.g., observational trial EMA trial

* Designyourintervention

* Testyourintervention

27



“...to find out what happens when you change something it is necessary
to changeit.”

-Box, Hunter, and Hunter (Statistics for Experimenters)



Step 3: Conduct a system ID experiment
(test in natural setting)

* Design open loop system ID study and analytic plan
e (Conduct data analyses

@ehekler



System identification (ID)

e System ID focuses on modeling of dynamical systems (such as humans) from
data, ideally from experimentation, not merely observation.

e Itisfocusedon estimating/validatinga modelto describe the system (e.g., a
human).

e Itis NOT focused on effect size estimates of intervention components.

@ehekler 30



One key COT sub-experiment

Open loop system ID

Tests understanding of the "system”
a) theory-testing
b) individualized tallorlng variable selectlon

@ehekler https: vi r in rol-
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https://www.mathworks.com/videos/understanding-control-systems-part-1-open-loop-control-systems-123419.html

Step 3: Open loop system ID experiment
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Figure 9 Time-series plot of a fitted 4-input model that was selected one of the participants.

Korinek et al. JBM, 2018; Freighoun et al. 2017, ACC, Phatak et al. JBI, 2018;
@ehek|er Hekler et al. JIMIR, 2018



Step 3 (cont). Study: YJust Walk”

Korinek et al. JBM, 2018; Freighoun et al. 2017, ACC; Phatak et al. JBI, 2018;
@ehekler Hekler et al. JMIR, 2018 b



Step 3 (cont) Participants

* BMI33.7+6.7

* 22 inactive, overweight Android users
* Age =47+ 6.2 years

* 37% women

* Living anywhere in the US

* Average Baseline Median Steps: 4972 steps/day (SE =
482)

Korinek et al. JBM, 2018, Freighoun et al. 2017, ACC, Phatak et al. JBI, 2018;
@ehekler  @ehekler Hekler et al. JMIR, 2018



Step 3 (cont): Feasibility results

+2,050 (=825 peoouaverngestep

increase from baseline to intervention
69% (SD =24)Average goals met ~ so000- /\
///
Py

>90% Adherence to EMA

100% enjoyed variable goals ﬁ
85% found app easy to use 7/% f

Steps - Predictions

88% interested in continuing to use

Time

@ehekler Korinek et al. JoBM, 2018 .



Step 3 (cont). Data analysis

e Data prep: The data is preprocessed for missing data entries.

e Define your model: The filtered data is fitted to a multi-input
AutoRegressive with eXternal input (ARX-[na nb nk]) parametric

model:
y(t) + ...+ an, y(t —ng) = bryur(t —ng) + ... + bpy1ur (t — ng — np + 1)

+ bliui(t — ﬂk) + ...+ bnbi"u%‘(t — N — Np + 1)

+ bin, Un, (t — 1) + oo + by, Un, (E— 1k —np + 1) +€(t)

e Validate your model: Various measures used, among these the
Normalized Root Mean Square Error (NRMSE) fit index:

model fit (%) = 100 x (1 _ %) )

y(k) is the measured output, (k) is the simulated output, 7 is the mean of all
measured y(k) values, and || - ||2 indicates a vector 2-norm ( ||z = vaTz).
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What does this get us?

* A modeltosimulate future responses for each individual.

* Thissimulation enables dynamic, idiosyncratic, self-correcting decisions for
each person.

C. A. Martin, D. E. Rivera and E. B. Hekler, (2016)
@ e h e |< | er American Control Conference (ACC)



Individualized tailoring variables!

Table 6 Final Selected Models and Input Combinations

\<
Model/Input Combination Number of ~ 6 C)@d\Q
foreacr o X in)
~Weekend® Q‘.\Oﬂo\o o)
Typical & Weekend® Q/x&@(‘ {\% PL
Busy® e® e 2
Base Model? \@%?} Q&\r& 1
StressP o° QQ‘O 1
Typical® NG @ 1
Busy & Weekenr" \o‘\(\ \QQ,Q’Q 1
Stress & Tyr’ d\ 1
Busy & © ,0\”1/ \d 1
Strp' dq\dg QO 1
\Q\Q .al & Weekend® 1
1

((\\QQ ,plcal & WeekendP

?\5%\) (\(\q base model that includes goals, expected points and granted points
\\O b = base model + specified inputs.

X
@ehekler Phatak et al. JBI, 2018



t's easier than you think...

* There’s likely a control theory person at your school

e Standardtoolkitsin MatlLab

— Translatableto R



Normal intervention development steps

* Litreview - organize your understanding of prior work
* Define a hypothesis

* Testyour hypothesisin naturalistic setting
— e.g., observational trial EMA trial

* Design yourintervention
* Testyourintervention

41



Step 4: Define optimization criteria & controller
(design your intervention)

* Physical activity
— Initiation "Set-point”
* 10,000 steps/day, on average per week

* +3,000 steps/day, on average per week relative to baseline

— Transitions (both positive & lapses/relapses):
* achieving 10,000 steps/day set point for 3 consecutive weeks OR
* AFTER at least 6 months, +3,000 steps/day set point for 3 weeks.

— Maintenance
* Continue to meet PA targets
» Reduce total interactions, ideally, to o, except self-tracking

@ehekler Hekler et al. JMIR, 2018

42



Closing the intervention loop

Health Coach

Daily
goals

IRewards

Actual Behavioral
steps signals

C. A. Martin, D. E. Rivera and E. B. Hekler, “A decision framework for an adaptive behavioral intervention for physical activity 43
@ehek|er using hybrid model predictive control,” 2016 American Control Conference (ACC), Boston, MA, 2016, pp. 3576-3581.



Step 4. Design t

he controller
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Martin, Rivera, & Hekler Am. Control Conference (2015; 2016)
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Step 4 (optional): Examine robustness via simulation

Steps

@ehekler
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Martin, Rivera, & Hekler (2016)
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Normal intervention development steps

* Litreview - organize your understanding of prior work
* Define a hypothesis

* Testyour hypothesisin naturalistic setting
— e.g., observational trial EMA trial

* Design yourintervention
* Testyourintervention

46



Step 5: Conduct a Control Optimization Trial (COT)
(test your intervention)

* Clearly specified adaptive intervention (already discussed)
* Design of sub-experiments and data analysis plan

* (Conduct the trial and the analyses

@ehekler



COT sub-experiment options

Open loop system ID y

Closed loop controller optimization

&R
" i o—fl ~ IEEAR
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see want
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Tests understanding of the "system” Tests understanding of the feedback/
a) theory-testing decision rule

b) individualized ta|Ior|ng variable selectlon a) real-time algorithm optimization
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https://www.mathworks.com/videos/understanding-control-systems-part-1-open-loop-control-systems-123419.html
https://www.mathworks.com/videos/understanding-control-systems-part-2-feedback-control-systems-123501.html

Proposed COT example

™ ;‘:’ 1000 T T T T T T T T T T T T T T T VL T T T T T T T T T T
=
=< =
L oD O =t 1 1 1 1 1 1 | | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 |
=E (o] 1014 20 30 40 50 60 70 80 o 100 110 120 130 140 150 160 1 1890 200 210 220 230 240 250 260 270
10000 § § o ' L T T ¥ Wy Wy 1y T " " " ™ " " T T T
z 2 VTR WL )
— g 5000 :
o =
o b L 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 L L .
o 101420 30 40 50 60 70O 80 of 100 110 120 130 140 150 160 1 190 200 210 220 230 240 250 260 270
=S T T T T T T T T T T T T T T T
= w -
s = 400
o © =200 [
z = il = 1 | 1 | | | | E 1 1 1 1 1 | | = = Il 1 = = I = :
o 101420 30 40 S0 60 7O 80 of 100 110 120 130 140 150 160 1 190 200 210 220 230 240 250 260 270
=] T T T T T T T T T T T T T T T T T
D LB 400 |-
S S 200
© o
G = L . | ! . L A | , . . A ; ; ; ,
3« o 101420 30 40 S0 60 70 80 of 100 110 120 130 140 150 160 1 190 200 210 220 230 240 250 260 270
"'6 L= T T T T T T T T T T T T T T T I | I— T I I ! ! !
© 100 [— —
L = — ]
3 @ 60 [— ]
i | % 20 7 T 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 L=
o o 101420 30 40 S0 60 7O 80 of 100 110 120 130 140 150 160 1 190 200 210 220 230 240 250 260 270
T T T T T T T T T T T T T T T T T T T T I T T T T
— 10000 — -—ea Em o EE e EE EE e Ee e e Ee el EE EE EE O B B B O S S o - a — =
o
=1 B
& S000 Maintenance
(=N . .
® cooo - Initiation
= Actual steps
2 W - . .
- Identification testing = — —Intervention objective
| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1
(o] 1014 20 30 A0 50 60 ] 80 1 100 110 120 130 140 150 160 1 180 200 210 220 230 240 250 260 270
Days

@ehekler

Closed loop optimization
(initiation)

Open-loop System ID

Closed loop optimization
(maintenance)
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What does this get us 7

* |Immediate benefits to individual

— Individualized models

* Enablessimulations of future responses for each person

— Individualized tailoring variables

* Enables matching the intervention to each person

— Real-time optimization algorithm

* Enables perpetual adaptation to changing people and contexts

* Secondary optimization benefits

— Rigorous data about each adaptive intervention element

* Enables data-driven optimization of elements (e.qg., tailoring variables, algorithms)

— Effect size estimates of intervention components via stats

* Enablesestimation of generalized effect of intervention components

— Rich experimental data

* Enablesdynamic theory testing in alignment with Riley, Rivera, et al's call (Riley et al 2011)

@ehekler
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MOST & Control Systems Engineering
« MOST * Control Engineering

* Preparation * Step 1: Derive a dynamical model
— Create a conceptual framework * Step 2: Define intervention options and
— Selectintervention components/options outcomes
— Conducta feasibility study « Step 3: Conduct a System Identification
— Define optimization criteria Experiment
* Optimization * Step 4: Design the Controller, Including
— Runan optimization trial (e.g., FT, Optimization Criteria
SMART, or MRT S
| ) * Step 5: Conduct a Control Optimization
* Evaluation Trial (COT)
— RCT of "optimized” intervention package e Evaluation

compared to meaningful comparator
— RCT comparing COT intervention to

meaningful comparator

@ehekler Rivera, Hekler et al. 2018, Hekler, Rivera, et al. JMIR 2018 51



Limitations

* COT approach has not been evaluated in an RCT
— Prior work justifies advancing this approach

— “"Back to the future” as Carver, Sheier and others wanted to use
these methods but technology was not ready

— [t now s

@ehekler



Testinga COT intervention inan RCT

Measurement

COT-based Intervention

Randomization Design only

(not to scale)

Outcome Measures

Non-COT-based Intervention

1) Steps/day

g
-; Q
L S 2) MVPA, min/week —
&
- 1) BMI
. 9 2) Blood pressure —
= 5 3) Heart rate
2 4) Heart rate variability
=2
= 1) Engage with apps
S=Z ) gag PP
. ‘:: 1) Steps/day
£ 2 3) Resting heart rate
ir (3]
i
o

Timeline Baseline

18




Limitations

* COT approach has not been evaluated in an RCT
— Prior work justifies advancing this approach

— "Back to the future” as Carver and Sheier and others wanted to
use these methods but technology not ready

— [tnow is
 Just like stats, you need a control systems engineer
* Approach opens up ethical issues

@ehekler



Repertoire of optimization trials

Intervention package

— Factorial/fractional factorial trial (FT)

Infrequent, key decision rules (e.g., clinical practice)
— Sequential Multiple Assignment Randomized Trial (SMART)
Bout-specific decision rules (i.e., just-in-time adaptive
interventions; JITAIs)

— Micro-randomization Trials (MRTs)

Gradual, non-linear, idiosyncratic change

— Control Optimization Trial (COT)



Take-home points

* If reducing lapses/relapses or promoting maintenance/abstinence is
your goal, then a control optimization trial (COT) might help you.

* [t's not easy, but it's easier than you think.
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