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Essentially, all models are wrong, 

but some are useful. 

– George E. Box



How we do Network Analysis
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• There is no single “right” network

• The structure of the network matters and network 

structure often changes between states.

• We have to move from asking “Is the network right?” 

to asking “Is the network useful?” 

• The real question is “Does a network model inform 

our understanding of biology?”

Starting Assumptions



The Methodological Zoo
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Question 1:

Can we solve the

“GWAS Puzzle”?



Genome Wide Association Studies (GWAS)

© Gibson & Muse,  A Primer of Genome Science



697 SNPs explain 20% of height

~2,000 SNPs explain 21% of height

~3,700 SNPs explain 24% of height

~9,500 SNPs explain 29% of height



97 SNPs explain 2.7% of BMI

All common SNPs may explain 20% of BMI

Do we give up on GWAS, fine map everything, 

or think differently?



Rare Variants = Dust

…large-scale sequencing does not support the idea that lower-frequency 

variants have a major role in predisposition to type 2 diabetes.



eQTL Analysis
Expression Quantitative Trait Locus Analysis (eQTL

Analysis) uses genome-wide data on genetic variants 

(SNPs) together with gene expression data

Treat gene expression as a quantitative trait

Ask, “Which SNPs are correlated with the degree of 

gene expression?”

Most people concentrate on cis-acting SNPs

What about trans-acting SNPs?



cis-eQTL Analysis



trans-eQTL Analysis



eQTL Networks: A simple idea

John Platig

• Perform a “standard eQTL” analysis:

Y = β0 + β1 ADD + ε

where Y is the quantitative trait and ADD is 

the allele dosage of a genotype.

Representing eQTLs as a network and 

analyzing its structure should provide insight 

in the complex interactions that drive 

disease.



Many strong eQTLs are found near the target 

gene.  But what about multiple SNPs that are 

correlated with multiple genes?

Genes

SNPs

eQTL Networks: A simple idea

Can a network of SNP-

gene associations 

(cis and trans) inform 

the functional roles of 

these SNPs?



The Result: A Hairball

Some random hairball I grabbed. I was too lazy to make one.



Results: COPD
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What about GWAS SNPs?

John Platig
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Can we use this network to identify 

groups of SNPs and genes that play 

functional roles in the cell?

Try clustering the nodes into 
“communities” based on the 

network structure



Newman 2006 (PNAS) 

• Community structure algorithms group nodes 

such that the number of links within a community 

is higher than expected by chance

• Formally, they assign nodes to communities such 

that the modularity, Q, is optimized

Fraction of network 

links in community i

Fraction of 

links expected 

by chance

Communities are groups of 
highly intra-connected nodes



Communities in COPD eQTL networks



• We identified 52 communities, with Q = 0.79 (out of 1)

• Of 34 communities in the giant connected component, 11 are 

enriched for genes with coherent functions (GO Terms; 

P<5x10-4) 

Communities in COPD eQTL networks



Communities in COPD eQTL networks

- Immune response

- Stress response

- T cell stimulation

- Microtubule organization

- Cell cycle

- Centrosome

- Chromatin Assembly

- DNA conformation 

change

- Nucleosome 

assembly



Identifying community cores

Newman 2006 (PNAS) 

• Score each SNP by its contribution to the modularity of its 

community

• Do these “core scores” reflect known biology? 

1

3
2



What about COPD GWAS SNPs?

• Use a meta-analysis by Cho et. al. and consider 

34 COPD GWAS SNPs (FDR < 0.05)

Cho, Michael H., et al. "Risk loci for chronic obstructive pulmonary disease: a 

genome-wide association study and meta-analysis." The Lancet Respiratory 

Medicine 2.3 (2014): 214-225.



Core Scores for COPD GWAS SNPs

The median core score for the 34 FDR-significant GWAS SNPs is 

20.3 times higher than the median for non-significant SNPs



First in lung tissue/COPD



How general is this?



Now in thirteen tissues



GTEx: A big sandbox



eQTL networks are highly modular



GWAS SNPs are cores, but not hubs



GWAS SNPs not Hubs—in every tissue



Core SNPs are more likely to be functionally annotated



Core SNPs are different from Hubs:

Roadmap Epigenomics Project

Global Hubs

Nongenic Enhancers

Polycomb Repressed 

Regions

Data from 8 tissues

Local Hubs (Core SNPs)

Tissue-specific active 

chromatin



• The SNPs that are global hubs are not GWAS hits—

meaning that they are not linked to diseases or traits.

• The SNPs and genes group into communities that 

share function—a family of SNPs regulate a function.

• Disease-associated (GWAS) SNPs map to communities 

whose genes have functions that make biological 

sense.

• “Core” SNPs are far more likely to be disease SNPs.

• Tissue-specific functions are in tissue-specific 

communities with tissue-specific genes organized 

around SNPs in tissue-specific open chromatin.

What does this tell us?



Question 2:

Can we model 

gene regulatory processes?



Integrative Network Inference: 

PANDA



Regulation of Transcription

Specific transcription factors

promoter
regulatory 

sequences



A Simple Idea: Message Passing
Transcription Factor

Downstream Target

The TF is Responsible for

communicating  with its Target

The Target must be Available

to respond to the TF

Kimberly Glass, GC Yuan



PPI0 Co-regulation0

Network1

Responsibility Availability

Network0

TF-Motif Scan

Co-regulation1PPI1

Glass et. al. “Passing Messages Between Biological Networks to Refine Predicted Interactions.”  PLoS One. 2013 May 31;8(5):e64832.
Code and related material available on sourceforge: http://sourceforge.net/projects/panda-net/

Message-Passing Networks: PANDA



Subtypes of Ovarian Cancer



Kimberly Glass, GC Yuan
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Kimberly Glass, GC Yuan



Kimberly Glass, GC Yuan



Kimberly Glass, GC Yuan



Inner ring: key TFs

Colored by Edge 

Enrichment (A or N)

Outer ring: genes

Colored by Differential 

Expression (A or N)

Interring Connections

Colored by 

Subnetwork (A or N)

Ticks – genes 

annotated to 

“angiogenesis” in GO,



TF1 TF2 sig. # Class

ARID3A PRRX2 1.16E-23 244 A+

ARID3A SOX5 1.01E-14 155 A+

PRRX2 SOX5 3.83E-12 157 A+

ARNT MZF1 5.83E-23 92 N-

AHR ARNT 6.13E-16 382 N-

ETS1 MZF1 9.08E-16 148 N-
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Complex Regulatory Patterns Emerge

Kimberly Glass, GC Yuan



Kimberly Glass, GC Yuan

Regulatory Patterns suggest Therapies



More application papers coming….



More application papers coming….



Question 3:

Can we move beyond 

THE Network?



Reconstructing Gene Regulatory 

Networks
Gene Expression Data

G
e
n
e
s

Multiple Samples

Network Reconstruction

One Network

Pearson Correlation, Mutual 

Information, CLR, PANDA, etc.

Marieke Kuijjer, Matt Tung, Kimbie Glass

We generally estimate “Aggregate” Networks.



Gene Expression Data

G
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Multiple Samples

Reconstructing Gene Regulatory 

Networks

Network Reconstruction

One Network

Represents information 

from all the input 

samples

Linear Interpolation to Obtain Network 

Estimates for Single Samples 

(LIONESS)

+ + + =

Pearson Correlation, Mutual 

Information, CLR, PANDA, etc.



Sample q’s contribution to e(α)

Network e(α)

Representing contributions 

from all samples

Reconstruct 

network

Network e(α-q)

Representing contributions 

from all samples except q

Reconstruct 

network
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• Data includes 48 total expression arrays taken over a time-

course (every 5 min) on synchronized yeast cells (~2 cell 

cycles)

• Includes technical replicates (Cy3/Cy5 and Cy5/Cy3)

• Estimate single-sample networks using data for each replicate.

Replicate 1 (24 Samples  24 Networks)

Replicate 2 (24 Samples  24 Networks)

A Quick Test Using Yeast Cell Cycle Data
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Validation and Insight

Marieke Kuijjer, Matt Tung, Kimbie Glass



good 

prognosis

poor 

prognosis

• Single-sample networks for TCGA 

glioblastoma patients

• 3yr survival to define good and poor 

prognosis

• LIMMA analysis using network

“edge Z-scores”

• Analysis points to important roles 

for FOS-JUN and NFkB

• Gene degree differences identify 

mitosis and immune-related genes

Significant 

differential targeting 

(gene degree 

differences), 

GSEA, FDR<0.01

higher targeting in 

good

higher targeting in 

poor

Glioblastoma 

network signatures



Before I came here I was confused 

about this subject. 

After listening to your lecture, 

I am still confused but at a higher level. 

- Enrico Fermi, (1901-1954)
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