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Essentially, all models are wrong,
but some are useful.

— George E. Box



How we do Network Anal
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Starting Assumptions

* There is no single “right” network

 The structure of the network matters and network
structure often changes between states.

 We have to move from asking “Is the network right?”
to asking “Is the network useful?”

* The real question is “Does a network model inform
our understanding of biology?”



e
The Methodological Zoo

Public Data Resources Algerithm Key.
Data Integration StringDB | FIMO/motif-scan | TargetScan
& = & NetW.Ol'k — BN . | SNA Input PANDA
c O Modelling gene gene Data
B O
0 >
- 5 . - pigene Network
20 Public Data Proteomics? et Alseriliin SPIDER
£ 8 Gene
e Expression RNA q
D E Genetic no yes Agﬁ{;&m
— Profiles
a o RPUIVA
Hypothesis
eO PANDA PIDER [ A Test
CONDOR:
= single = pairs of - LIONESS
ONDC network networks
Differentia
ode Co e © ALPACA ode ALPACA
prioritize SNPs single-sample networks © R D
MONSTER
model Comparative
covariates Silo . . . . . Network
integrate Analysis
variants
Edge Communities
(set of edges perturbed by SNPs)




Question 1:
Can we solve the

“GWAS Puzzle”?



Genome Wide Association Studies (GWAS)
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Defining the role of common variation in the genomic
and biological architecture of adult human height

Using genome-wide data from 253,288 individuals, we identified 697 variants at genome-wide significance that together
explained one-fiith of the heritability for adult height. By testing different numbers of variants in independent studies, we show
that the most strongly associated ~2,000, -3,700 and ~-9,500 SNPs explained ~21%, ~24% and ~29% of phenotypic variance.
Furthermore, all common variants together captured 60% of heritability. The 697 variants clustered in 423 loci were enriched for
genes, pathways and tissue types known to be involved in growth and together implicated genes and pathways not highlighted in
earlier efforts, such as signaling by fibroblast growth factors, WNT/B-catenin and chondreitin sulfate—related genes. We identified
several genes and pathways not previously connected with human skeletal growth, including mTOR, osteoglycin and binding

of hyaluronic acid. Our results indicate a genetic architecture for human height that is characterized by a very large but finite
number (thousands) of causal variants.

697 SNPs explain 20% of height
~2,000 SNPs explain 21% of height
~3,700 SNPs explain 24% of height
~9,500 SNPs explain 29% of height




S A B
ARTICLE

doi:10.1038/nature 14177

Genetic studies of body mass index yield
new insights for obesity biology

A list of authors and their affiliations appears at the end of the paper

Obesity is heritable and predisposes to many diseases. To understand the genetic basis of obesity better, here we conduct
a genome-wide association study and Metabochip meta-analysis of body mass index (BMI), a measure commonly used to
define obesity and assess adiposity, inup to 339,224 individuals. This analysis identifies 97 BMI -associated loci (P < 5 x 107%),
36 of which are novel. Five loci demonstrate clear evidence of several independent association signals, and many loci have
significant effects on other metabolic phenotypes. The 97 loci account for ~2.7% of BMI variation, and genome-wide
estimates suggest that common variation accounts for =20% of BMI variation. Pathway analyses provide strong support for
arole ofthe central nervous system in obesity susceptibility and implicate new genes and pathways, including those related
to synaptic function, ghutamate signalling, insulin secretion/action, energy metabolism, lipid biology and adipogenesis.

97 SNPs explain 2.7% of BMI
All common SNPs may explain 20% of BMI

Do we give up on GWAS, fine map everything,
or think differently?



Rare Variants = Dust

ARTICLE

doi:10.1038/nature18642

The geneti
contribute

camnloc nrna

The genetic architecture of type 2 diabetes

A list of authors and affiliations appears in the online version of the paper
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Low-frequency and
rare variants explain
~75% of heritability
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Intermediate model
Low-frequency and
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B Number of low-frequency and rare variants, P < 1 x107¢

B Number of low-frequency and rare variants, P < 5 x10-8

...large-scale sequencing does not support the idea that lower-frequency
variants have a major role in predisposition to type 2 diabetes.
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eQTL Analysis

Expression Quantitative Trait Locus Analysis (eQTL
Analysis) uses genome-wide data on genetic variants
(SNPs) together with gene expression data

Treat gene expression as a quantitative trait

Ask, “Which SNPs are correlated with the degree of
gene expression?”

Most people concentrate on cis-acting SNPs

What about trans-acting SNPs?



cis-eQTL Analysis

Population Sample

Expression
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trans-eQTL Analysis
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eQTL Networks: A simple idea

Perform a “standard eQTL" analysis: Population Sample

Y =B, + B,ADD + ¢

c
o |.©
where Y is the quantitative traitand ADDis '@ | o P
the allele dosage of a genotype. “a’_ - °
EA
i O
CC CG GG

Representing eQTLs as a network and
analyzing its structure should provide insight
In the complex interactions that drive
disease.

John Platig
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eQTL Networks: A simple idea

Many strong eQTLs are found near the target
gene. But what about multiple SNPs that are
correlated with multiple genes?

Can a network of SNP-
gene associations

(cis and trans) inform
the functional roles of
these SNPs?

SNPs

Genes
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The Result: A Hairball

Some random hairball | grabbed. | was too lazy to make one.
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Results: COPD
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10° E

10°
107"
107"
S
5 10 :
v.
o 107 !
LL 3 °
10 ‘:‘:‘&"1.%
107 “ 107 ey

~30,000 SNPs and ~3,400 Genes

Degree — number of links per node



L
What about GWAS SNPs?

SNP Degree Distribution
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Can we use this network to identify
groups of SNPs and genes that play
functional roles in the cell?

Try clustering the nodes Into
*communities” based on the
network structure
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Communities are groups of

highly intra-connected nodes

« Community structure algorithms group nodes
such that the number of links within a community
IS higher than expected by chance

« Formally, they assign nodes to communities such
that the modularity, Q, is optimized

Q = Z(eiz’ - 6'1;32)

/

Fraction of network
links in community i

Fraction of
links expected
by chance

Newman 2006 (PNAS)



Communities in COPD eQTL networks
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Communities in COPD eQTL networks

- We identified 52 communities, with Q = 0.79 (out of 1)

- Of 34 communities in the giant connected component, 11 are

enriched for genes with coherent functions (GO Terms;
P<5x104)




e
Communities in COPD eQTL networks

- Chromatin Assembly
- DNA conformation Microtubul —
change - Microtubule organization

- Nucleosome - ge”tcyde
assembly - Centrosome

- Immune response
- Stress response
- T cell stimulation
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ldentifying community cores

« Score each SNP by its contribution to the modularity of its
community
* Do these “core scores” reflect known biology?

Newman 2006 (PNAS)
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What about COPD GWAS SNPs?

- Use a meta-analysis by Cho et. al. and consider
34 COPD GWAS SNPs (FDR < 0.05)

Cho, Michael H., et al. "Risk loci for chronic obstructive pulmonary disease: a
genome-wide association study and meta-analysis." The Lancet Respiratory
Medicine 2.3 (2014): 214-225.
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Core Scores for COPD GWAS SNPs

The median core score for the 34 FDR-significant GWAS SNPs is
20.3 times higher than the median for non-significant SNPs

—
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FDR < 0.05 FDR >=0.05
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First in lung tissue/COPD

@ PLOS | sigapmona:

RESEARCH ARTICLE
Bipartite Community Structure of eQTLs

John Platig'?#, Peter J. Castaldi®**5, Dawn DeMeo®>¢, John Quackenbush'-2-*

1 Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston,
Massachusetts, United States of America, 2 Department of Biostatistics, Harvard Chan School of Public
Health, Boston, Massachusetts, United States of America, 3 Channing Division of Network Medicine,
Brigham and Women'’s Hospital, Boston, Massachusetts, United States of America, 4 Division of General
Medicine, Brigham and Women's Hospital, Boston, Massachusetts, United States of America, 5 Harvard
Medical School, Boston, Massachusetts, United States of America, 6 Division of Pulmonary and Critical Care
Medicine, Brigham and Women's Hospital, Boston, Massachusetts, United States of America

$This author is the senior author of this work.
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Abstract
Genome Wide Association Studies (GWAS) and expression quantitative trait locus (eQTL)
E OPEN ACCESS analyses have identified genetic associations with a wide range of human phenotypes.

. . However, many of these variants have weak effects and understanding their combined
Citation: Platig J, Castaldi PJ, DeMeo D, fect . hallen Oneh thesis is that multiple SNPs int t in complex net
Quackenbush J (2016) Biparite Community Struchre effect remains a challenge. One hypothesis is ultiple s interact in complex net-
of eQTLs. PLoS Comput Biol 12(9): 1005033, works to influence functional processes that ultimately lead to complex phenotypes, includ-
doi:10.1371foumal.pcbi. 1005033 ing disease states. Here we present CONDOR, a method that represents both cis- and
Ediitor: Florian Markowetz, University of Cambridge, ~ trans-acting SNPs and the genes with which they are associated as a bipartite graph and
UNITED KINGDOM then uses the modular structure of that graph to place SNPs into a functional context. In




How general Is this?



Now In thirteen tissues
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Exploring regulation in tissues with eQTL networks
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Characterizing the collective regulatory impact of genetic vari-
ants on complex phenotypes is a major challenge in developing a
genotype to phenotype map. Using expression quantitative trait
locus (eQTL) analyses, we constructed bipartite networks in which
edges represent significant associations between genetic variants
and gene expression levels and found that the network structure
informs regulatory function. We show, in 13 tissues, that these
eQTL networks are organized into dense, highly modular commu-
nities grouping genes often involved in coherent biological pro-
cesses. We find communities representing shared processes across
tissues, as well as communities associated with tissue-specific pro-
cesses that coalesce around variants in tissue-specific active chro-
matin regions. Node centrality is also highly informative, with the
global and community hubs differing in regulatory potential and
likelihood of being disease associated.

GTEx | expression quantitative trait locus | eQTL | bipartite networks |
GWAS

biological pathways. In particular, we find three aspects of the
eQTL network topology that inform tissue-level regulatory biol-
ogy: (/) Communities—which are composed of SNPs and genes
with a high density of within-group edges—are enriched for
pathways, functionally related genes, and SNPs in tissue-specific
active chromatin regions (actively transcribed and open regula-
tory regions); (i/) community hubs (core SNPs)—which are SNPs
highly connected to genes in their community—are enriched for
active chromatin regions close to the transcriptional start site
and for GWAS association; and (i) global hubs—which are con-
nected to many genes throughout the network—are enriched
for distal elements such as nongenic enhancers and devoid of
GWAS association. The picture that emerges from analysis of
the eQTL networks is a complex web of associations that reflects
the polygenic architecture across tissues and that provides a nat-
ural framework for understanding both the shared and tissue-
specific effects of genetic variants. These networks, along with
SNP and gene network properties across all 13 tissues, are avail-




GTEX: A big sandbox

RESEARCH

RESEARCH ARTICLE

HUMAN GENOMICS

The Genotype-Tissue Expression
(GTEX) pilot analysis: Multitissue
gene regulation in humans

The GTEx Consortium*t

Understanding the functional consequences of genetic variation, and how it affects
complex human disease and quantitative traits, remains a critical challenge for
biomedicine. We present an analysis of RNA sequencing data from 1641 samples
across 43 tissues from 175 individuals, generated as part of the pilot phase of the
Genotype-Tissue Expression (GTEx) project. We describe the landscape of gene
expression across tissues, catalog thousands of tissue-specific and shared regulatory
expression quantitative trait loci (eQTL) variants, describe complex network relationships,
and identify signals from genome-wide association studies explained by eQTLs.
These findings provide a systematic understanding of the cellular and biological
consequences of human genetic variation and of the heterogeneity of such effects
among a diverse set of human tissues.

ver the past decade, there has been a marked
increase in our understanding of the role

are for any given GWAS locus or disease. Hence,
understanding the role of regulatory variants,

statistical power, we prioritized RNA sequencing
of samples from nine tissues that were most fre-
quently collected and that routinely met mini-
mum RNA quality criteria: adipose (subcutaneous),
tibial artery, heart (left ventricle), lung, muscle
(skeletal), tibial nerve, skin (Sun-exposed), thyroid,
and whole blood (Table 1) (14).

We performed 76-base pair (bp) paired-end
mRNA sequencing on a total of 1749 samples, of
which 1641 samples from 43 sites, and 175 do-
nors, constituted our final “pilot data freeze”
reported on here (14). Median sequencing depth
was 82.1 million mapped reads per sample (fig.
S3A). The final data freeze included samples from
43 body sites: 29 solid-organ tissues, 11 brain sub-
regions (with two duplicated regions), a whole-
blood sample, and two cell lines derived from
donor blood [EBV-transformed lymphoblastoid
cell lines (LLCLs)] and skin samples (cultured fi-
broblasts) (Table 1 and tables S1 and 52). Median
sample size for the nine high-priority tissues was
105; median sample size for the other 34 sampled
sites was 18.5.

Gene expression across tissues

We examined the patterns of expression of 53,934
transeribed genes across tissues [on the basis of
Gencode V12 annotations] (74, 15). The number of
biotypes [protein-coding genes, pseudogenes, and
long noncoding RNAs (IncRNAs)] that were tran-
scribed above a minimal threshold [reads per kilo-

hcemag.org/ on May 10, 2016
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eQTL networks are highly modular
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GWAS SNPs are cores, but not hubs
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Core SNPs are more likely to be functionally annotated
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Core SNPs are different from Hubs:
Roadmap Epigenomics Project

Chromatin State
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What does this tell us?

« The SNPs that are global hubs are not GWAS hits—
meaning that they are not linked to diseases or traits.

« The SNPs and genes group into communities that
share function—a family of SNPs regulate a function.

* Disease-associated (GWAS) SNPs map to communities
whose genes have functions that make biological
sense.

« “Core” SNPs are far more likely to be disease SNPs.
« Tissue-specific functions are in tissue-specific

communities with tissue-specific genes organized
around SNPs in tissue-specific open chromatin.



Question 2:
Can we model
gene regulatory processes?
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Integrative Network Inference:

PANDA

OPEN (@ ACCESS Freely available online @PLOS | one

Passing Messages between Biological Networks to Refine
Predicted Interactions

Kimberly Glass'?, Curtis Huttenhower?, John Quackenbush'?, Guo-Cheng Yuan'**

1 Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America, 2 Department of Biostatistics,
Harvard School of Public Health, Boston, Massachusetts, United States of America

Abstract

Regulatory network reconstruction is a fundamental problem in computational biclogy. There are significant limitations to
such reconstruction using individual datasets, and increasingly people attempt to construct networks using multiple,
independent datasets obtained from complementary sources, but methods for this lntegrannn are lacking. We developed
PANDA (Passing Attributes between Networks for Data Assimilation), a message-passing model using multiple sources of
information to predict requlatory relationships, and used it to integrate protein-protein interaction, gene expression, and
sequence motif data to reconstruct genome-wide, condition-s pecific requlatory networks in yeast as a model. The resulting
networks were not only more accurate than those produced using individual data sets and other existing methods, but they
also captured information regarding specific biological mechanisms and pathways that were missed using other
methodologies. PANDA is scalable to higher eukaryotes, applicable to specific tissue or cell type data and conceptually
generalizable to include a variety of regulatory, interaction, expression, and other genome-scale data. An implementation of
the PANDA algorithm is available at www sourceforge.net/projects/panda-net.
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A Simple Idea: Message Passing

Transcription Factor
O The TF is Responsible for
communicating with its Target
R(t} Ek-‘qtt_l}ci{j-‘q( fl’EkCi{jﬂiu}

Downstream Target

The Target must be Available
to respond to the TF
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Kimberly Glass, GC Yuan




Message-Passing Networks: PANDA

TF-Motif Scan

l

? PPI, Network, Co-regulation,

Responsibility Availability

N

PP|1 @ NetWOI’kl é CO'regUIationl

Glass et. al. “Passing Messages Between Biological Networks to Refine Predicted Interactions.” PLoS One. 2013 May 31;8(5):e64832.
Code and related material available on sourceforge: http://sourceforge.net/projects/panda-net/
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Subtypes of Ovarian Cancer

OPEN @ ACCESS Freely available online PLoS one

Angiogenic mRNA and microRNA Gene Expression

Signature Predicts a Novel Subtype of Serous Ovarian
Cancer

Stefan Bentink"®?, Benjamin Haibe-Kains''®®, Thomas Risch’, Jian-Bing Fan?®, Michelle S. Hirsch®’,
Kristina Holton', Renee Rubio', Craig April®, Jing Chen?, Eliza Wickham-Garcia®, Joyce Liu*’, Aedin
Culhane'®, Ronny Drapkin®>7, John Quackenbush’%¢*', Ursula A. Matulonis®>”"

1 Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America, 2 Department of Cancer Biclogy,
Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America, 3 lllumina, Inc,, 5an Diego, California, United States of America, 4 Department of Pathology,
Division of Woman's and Perinatal Pathology, Brigham and Women's Hospital, Boston, Massachusetts, United States of America, 5 Department of Medical Oncology, Dana-

Farber Cancer Institute, Boston, Massachusetts, United States of America, 8Harvard School of Public Health, Boston, Massachusetts, United States of America, 7 Harvard
Medical School, Boston, Massachusetts, United States of America

Abstract

Ovarian cancer is the fifth leading cause of cancer death for women in the U.S. and the seventh most fatal worldwide.
Although ovarian cancer is notable for its initial sensitivity to platinum-based therapies, the vast majority of patients
eventually develop recurrent cancer and succumb to increasingly platinum-resistant disease. Modem, targeted cancer drugs
intervene in cell signaling, and identifying key disease mechanisms and pathways would greatly advance our treatment

abilities. In order to shed light on the molecular diversity of ovarian cancer, we performed comprehensive transcriptional
nrafilina an 179 advancad ctana hinh Arade carniie avardan rancare We imnlamentad a receamnlina hazad varcinn nf tha
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Complex Regulatory Patterns Emerge

TFl  TE2
ARID3A PRRX2
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ETS1 MZF1
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Kimberly Glass, GC Yuan
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Regulatory Patterns suggest Therapies

ANGIOGENIC BEHAVIOR

TREATMENT MODEL

VEGF production
and angiogenesis
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High levels of CpG methylation

(1) Prevent ARNT/HIF1a and (3) Decrease genome-
ETS1/HIF2a dimerization wide methylation

& 6® ©
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(2) Promote ARNT/AHR and
ETS1/AHR dimerization

Kimberly Glass, GC Yuan
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Diet-induced weight loss leads to a switch in gene regulatory network
control in the rectal mucosa
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ARTICLE INFO ABSTRACT
Article history: Background: Weight loss may decrease risk of colorectal cancer in obese individuals, yet its effect in the
Received 7 April 2016 colorectum is not well understood. We used integrative network modeling Passing Attributes between Met-
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works for Data Assimilation, to estimate transariptional regulatory network models from mBEMA expression levels
from rectal mumsa biopsies measured pre- and post-weight loss in 10 obese, pre-menopausal women,
Results: We identified significanty greater regulatory targeting of glucose transport pathways in the post-weight
loss regulaory network, induding * regulation of glucose transport” (FDR = 0.02), “hexose transport” (FDR =
0.06), “glucose transport” (FOR = 0.06) and “monosaccharide transport” (FDR = 0.08). These findings were
not evident by gene expression analysis alone. Network analysis also suggested a regulatory switch from
NFKB1 © MAX control of MYC post-weight loss.
Condusions: These network-based results expand upon standard gene expression analysis by providing evide nce
for a potential mechanistic alteration caused by weight loss.

@ 2016 The Authors. Published by Elsevier Inc. This is an open access artide under the CCBY license (htrpy//

creativecommons.org/licenses by 4.0/).
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SUMMARY

Although all human tissues carry out common pro-
cesses, tissues are distinguished by gene expres-
sion patterns, implying that distinct regulatory pro-
grams control tissue specificity. In this study, we
investigate gene expression and regulation across
38 tissues profiled in the Genotype-Tissue Expres-
sion project. We find that network edges (transcrip-
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biological function requires the combinatorial
multiple regulatory elements, primarily trans
that work together with other genetic and envirg
to mediate the transcription of genes and their
(Vaquerizas et al., 2009).

Gene regulatory network modeling provides
framework that can summarize the complex intd
transcription factors, genes, and gene product]
Oltvai, 2004; Gerstein et al., 2012). Despite th

38Tissues/Tissue-Sites
H ] EFEE Nl

R f . h high the regulatory process, the most widely used ng Nodes Etﬁei
tion factor to target gene connections) have higher . . - cedon pairwise gene co-expres| ==
—_ Tissue-Specific Edges (—):
—— « depleted for canonical interactions
T—— - enriched between tissue-specific nodes

Quantify
Tissue-Specificity

Gene Regulator
Expression  Networks

Identify Tissue-Specific:

Cell Reports

Understanding Tissue-Specific Gene Regulation

stract

Characterize
Tissue-Specific Gene Regulation

Tissue-Specific Transcription Factors (():
« often shared across tissues
« not the sole regulators of tissue-specificity

Tissue-Specific Genes ([7]):
« have fewer connections
« have more shortest paths

Highlights

than nodes (

e Regulatory network connections are more tissue specific

genes and transcription factors)
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In Brief

Understanding gene regulation is
important for many fields in biology and
medicine. Sonawane et al. reconstruct
and investigate regulatory networks for
38 human tissues. They find that
regulation of tissue-specific function is
largely independent of transcription
factor expression and that tissue
specificity appears to be mediated by
tissue-specific regulatory network paths.
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Question 3:
Can we move beyond
THE Network?



Reconstructing Gene Regulatory
Networks

Gene Expression Data

Network Reconstruction

Pearson Correlation, Mutual |

Information, CLR, PANDA, etc.

Genes

Multiple Samples

One Network

We generally estimate “Aggregate” Networks.

Marieke Kuijjer, Matt Tung, Kimbie Glass



Reconstructing Gene Regulatory
Networks

Gene Expression Data

Network Reconstruction

Pearson Correlation, Mutual |

Information, CLR, PANDA, etc.

Genes

Multiple Samples

/ / \ \ / One Network

Linear Interpolation to Obtain Network Represents information

Estimates for Single Samples fromsgllfntglee Sinput
(LIONESS)




Genes =2

Genes =2

Single-Sample Networks (LIONESS)
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A Quick Test Using Yeast Cell Cycle Data
« Data includes 48 total expression arrays taken over a time-
course (every 5 min) on synchronized yeast cells (~2 cell

cycles)
 Includes technical replicates (Cy3/Cy5 and Cy5/Cy3)
« Estimate single-sample networks using data for each replicate.
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Replicate 2 (24 Samples = 24 Networks)
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Validation and Insight
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Glioblastoma
network sighatures
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» Single-sample networks for TCGA
glioblastoma patients

« 3yr survival to define good and poor
prognosis

* LIMMA analysis using network
“edge Z-scores”

* Analysis points to important roles
for FOS-JUN and NFkB

* Gene degree differences identify
mitosis and immune-related genes
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Before | came here | was confused
about this subject.
After listening to your lecture,
| am still confused but at a higher level.

- Enrico Fermi, (1901-1954)
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