New Opportunities for Measuring Physical Activity and the Resulting Research Needs

Stephen Intille, Ph.D.
Associate Professor
College of Computer and Information Science and Bouvé College of Health Sciences
Northeastern University
Boston, Massachusetts

Funded, in part, by the NIH/NHLBI Genes and Environment Initiative
Caveats

• Engineer’s perspective

• Engineer’s optimism

• Bias toward long-term measurement

• Anticipating industry developments on the horizon
Behavior measurement

Today (e.g., PA/SB)
- Surveys
- Proprietary objective sensors
- Limited information about context
- 1-7 days of data
- Costly compensation
- Expert-assisted recall for detailed timeline
- Limited location info
- Limited info on decision-making

Soon
- Open source phone apps (with optional add-on sensors)
- Months of continuous data
- Citizen scientists donating info
- Computer-assisted recall (using passive data collection)
- Full location information
- Context/purpose info...
Behavior measurement

Today (e.g., PA/SB)
- Hypothesis driven investigations to understand correlations

Soon
- Data driven, incremental and interactive discovery for intervention theory development
Thinking long term

- Two motivations for measurement
 - Scientific inquiry (Better tools for scientists)
 - Building effective (and hopefully cost-effective)...
 - Devices to measure changes in behavior/state
 - Devices to use measurement to intervene with health/wellness that are tailored based on behavior/state

This requires longer-term, less invasive measurement than scientific inquiry might
Measurement fidelity: “why”

Think like a designer

What immediate opportunities does the environment create?

Why is this person walking now?

What are the characteristics of this environment?

What is the relationship & conversation between these two?

What happened last week?

What will this other person likely do next?

Does this person normally walk in this situation?

What happened last year?

Who is this other person?

What is this person most likely to do next?
Interventions: How to touch?

- Augmented reality display
- Nearby stranger’s phone
- Phone
- Friend’s phone
- Computers at home
- Computer in car
- Computers at work
- Displays in environment
- Messages from friends in social networks
- Subway service suspended.
Passive sensing assumption

Implied ideal model is one where subjects put on sensors, and wear with no training or interaction required.

There is only so far that this will go...
Passive sensing insufficient

- “Fuzzy” behavior
- Noisy sensors
- Missing sensors
- Interventions require interaction
 - End-users must guide (with training data)
 - End-users must fix

Some self-report will be required ...
Context-sensitive EMA

• Triggering questions (on phone) based on automatic, passive or active sensing of person’s context

• Minimize participant burden by targeting requests for context information

• Gather information about the “why” of behavior
CS-EMA

• Pros:
 – Less annoyance to EMA participant for acquisition of same info
 – Increasingly viable at low cost with sensing and processing power of mobile phones
 – Closer to just-in-time interventions

• Cons:
 – Noise in context detection
 – Statistical tradeoffs
CS-EMA & ubiquitous sensing

• CS-EMA might use a variety of passive sensors (think of “sensor” broadly)
 – In phone
 – Communicating with phone
 – In environment

• Passive sensor processing triggers active self-report to fill in gaps
Activity/context detection

Roughly two categories of motion...

“Moving light displays”
(Limb motion (2+) sensing best)
- Postures
- Ambulation
- Structured exercises
- Some sports
- ...

“Invisible man movies”
(Sensing of object use/movement best)
- Making bed
- Cooking
- Socializing
- Some sports
- ...

Doing this well will require long-term, dense data on individuals to build models... “big, n=1 data”
Activity/context detection

Different problems ... requiring different models

“What’s happening now?”

“What’s influencing decisions?”

“What’s going to happen next”

“What will influence decisions relative to what is happening now?”

Doing this well will require long-term, dense data on individuals to build models... “big, n=1 data”
Long-term behavior data

“Primitive” example from Wocketts system
Prototype: Wockets system

• Goal
 – 24/7 measurement of physical activity of
 • Type
 • Intensity
 • Duration
 • Location
 – For months+ (with compliance feedback)
 – Cost suitable for cohort studies
 • Exploit consumer phone technologies
 • All open source
New Opportunities...

Vision: population-scale

- Participant has flexibility in how to wear/use sensors
- New surveys/intervention remotely loaded & administered; remote software updates w/ new capabilities
- Data sent to server for analysis & remote administration
- 24/7 Real-time PA detection and context-sensitive self report with sensors (GPS, phone)
- Real-time feedback to encourage compliance

App Store

Intille / Northeastern
Activity monitors abound
Wockets system fills a niche

• 24/7 remote data collection that may improve PA/SB research
 – Missing data
 • Real-time compliance feedback
 • Remote compliance monitoring
 • Less reliance on single body location
 – Sampling bias
 – Activity type info via pattern recognition with upper/lower body sensing
 – Combine passive monitor and trigger self-report to fill in context
Wocket “kit” (+ phone)

Charge 2

Wear 2 for 24h

Capture upper + lower body motion at 40Hz that can be processed for activity type and intensity detection
Thin for continuous wearability

Actigraph

Wocket
A day in the life of a participant

- In the morning, swap & select locations
- Wear sensors under clothing
- Go about day; use phone normally
- Phone knows PA/SB level with 1 min latency; triggers questions
- At night, plug in phone next to bed
- Data transmitted to lab for remote monitoring
- Phone collects a variety of data types
Other data

- Phone location (indoor, outdoor)
- Phone motion and use
- Proximity friends/family
- Communication (e.g., calls, texts)
- Optional HR: (using modified Zephyr):

(Worn under shirt)
Working toward...

• 24/7 real-time knowledge of
 – Activity type
 – Duration
 – Intensity
 – Location
 – Other information gathered from phone
 • Communication
 • Social interaction

+ Self-reported contextual information
Video
Compliance feedback

April 27, 2012

T-Mobile
Get More...

Ongoing

USB connected
Select to copy files to/from your computer.

USB debugging connected
Select to disable USB debugging.

Notifications

In the last 24 hours, you have missed 40.1% data in the wrist and 47.2% data in the ankle.
Video
Video
Lab performance: Activity rec

<table>
<thead>
<tr>
<th>Activities to recognize</th>
<th>Random Guess (%)</th>
<th>Total Accuracy (%)</th>
<th>Subject Dependent</th>
<th>Subject Independent</th>
</tr>
</thead>
<tbody>
<tr>
<td>All (51)</td>
<td>1.9%</td>
<td>87.9</td>
<td>50.6</td>
<td></td>
</tr>
<tr>
<td>All with no intensities (31)</td>
<td>3.2%</td>
<td>91.4</td>
<td>72.0</td>
<td></td>
</tr>
<tr>
<td>Postures, ambulation and two MET intensity categories (11)</td>
<td>9%</td>
<td>96.5</td>
<td>81.3</td>
<td></td>
</tr>
<tr>
<td>Postures and Ambulation with no intensity (8)</td>
<td>12.5%</td>
<td>98.4</td>
<td>92.9</td>
<td></td>
</tr>
<tr>
<td>Postures (4)</td>
<td>25%</td>
<td>99.3</td>
<td>98.0</td>
<td></td>
</tr>
</tbody>
</table>

Self-report can fill in gaps/fix errors
If you had this info, plus social interaction, location, and more ... for long time periods ... How might that change your research questions and the interventions you might build?
Opportunities to explore (or not ignore)

- Real-time feedback
 - Improve subject compliance
 - Drive novel “just-in-time” tailored interventions

- Remote subject data analysis & monitoring
 - Make longitudinal studies with high fidelity data possible
 - Lower the cost of running studies with very high numbers of subjects (thousands)
Opportunities to explore (or not ignore)

• Multi-sensor fusion
 – Improve type and energy expenditure estimation by capturing upper/lower body motion
 – Improve type detection using environmental sensors

• “Unusual” accelerometer locations
 – Test ankle, thigh, head (on HMD)
 – Let people swap locations around
Wrist vs. ankle

Unpublished data
Real-time walking/loc detection

• Video
Opportunities to explore (or not ignore)

- Subject-specific training data
 - Increase type detection accuracy
 - Learn how to build human-computer interactions systems that will be necessary for effective interventions

- Building large, annotated behavior datasets...
Datasets to drive innovation

• Data component properties:
 – Large numbers of participants
 – Sampled for several weeks+
 – While wearing a variety of sensors simultaneously
 – Where all activities are labeled in detail
 – Start with convenience samples

• Algorithm component properties
 – Open algorithms
 – Easy to use
Data: Think broadly

• Datasets should include (or at least not exclude)
 – Multiple accelerometers
 • Upper and lower body
 – Phones (used normally) and data they gather
 – Location (despite deidentification challenges)
 – New sensor types
 • Wearable cameras
 • Physiological sensors
 • Electronic use of devices
 • In home “object use” sensors
Transdisciplinary collaboration

• Big, easy-to-use datasets will
 – Lure engineers interested in machine learning, gait analysis, and human-computer interaction to this domain
 – Drive the community to common evaluation standards, permitting cross-study comparison
 – Encourage innovation
 – Lead to engineering competitions for novel solutions
Take away #1

• Mobile phones will become the hub device for PA data collection because they will...
 – Have a “backup” internal sensor
 – Facilitate long-term compliance monitoring
 – Permit gathering rich information about context from multiple types of sensors, including self-report
 – Be used for novel “just-in-time” interventions
Take away #2 and #3

• Phones + sensors can detect enough information about behavior to create new methods to facilitate context-sensitive self-report (CS-EMA)

• No sensor is perfect: multi-sensor behavior recognition in combination with real-time or interactive time self-report is the path forward
Take away #4 and #5

• Large, open, extensible datasets are key to avoiding confusion in the field as more sophisticated data processing methods are introduced.

• Think broadly about “sensors” and multi-sensor fusion and opportunity for data-driven discovery with convenience samples.
For more information

• Send me email: s.intille@neu.edu

• http://mhealth.ccs.neu.edu

• Ask me about Northeastern’s transdisciplinary Ph.D. in Personal Health Informatics
 http://phi.neu.edu